Skip to main content

Parabolic Molecules: Curvelets, Shearlets, and Beyond

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 83))

Abstract

Anisotropic representation systems such as curvelets and shearlets have had a significant impact on applied mathematics in the last decade. The main reason for their success is their superior ability to optimally resolve anisotropic structures such as singularities concentrated on lower dimensional embedded manifolds, for instance, edges in images or shock fronts in solutions of transport dominated equations. By now, a large variety of such anisotropic systems have been introduced, for instance, second-generation curvelets, bandlimited shearlets, and compactly supported shearlets, all based on a parabolic dilation operation. These systems share similar approximation properties, which are usually proven on a case-by-case basis for each different construction. The novel concept of parabolic molecules, which was recently introduced by two of the authors, allows for a unified framework encompassing all known anisotropic frame constructions based on parabolic scaling. The main result essentially states that all such systems share similar approximation properties. One main consequence is that at once all the desirable approximation properties of one system within this framework can be deduced virtually for any other system based on parabolic scaling. This paper motivates and surveys recent results in this direction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersson, F., de Hoop, M., Smith, H., Uhlmann, G.: A multi-scale approach to hyperbolic evolution equations with limited smoothness. Comm. PDE 33, 988–1017 (2008)

    Article  MATH  Google Scholar 

  2. Borup, L., Nielsen, M.: Frame decompositions of decomposition spaces. J. Fourier Anal. Appl. 13, 39–70 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Candès, E.J., Demanet, L.: The curvelet representation of wave propagators is optimally sparse. Comm. Pure Appl. Math. 58, 1472–1528 (2002)

    Article  Google Scholar 

  4. Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? Phil. Trans. R. Soc. Lond. A. 357, 2495–2509 (1999)

    Article  MATH  Google Scholar 

  5. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with \(C^2\) singularities. Comm. Pure Appl. Math. 56, 219–266 (2004)

    Article  Google Scholar 

  6. Candès, E.J., Donoho, D.L.: Continuous curvelet transform: I. Resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19, 162–197 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès, E.J., Donoho, D.L.: Continuous curvelet transform: II. Discretization and frames. Appl. Comput. Harmon. Anal. 19, 198–222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casazza, P.G., Kutyniok, G. (eds.): Finite Frames: Theory and Applications. Birkhäuser, Boston (2012)

    Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Bostan (2003)

    Google Scholar 

  10. DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L.: Sparse components of images and optimal atomic decomposition. Constr. Approx. 17, 353–382 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Flinth, A.: 3D parabolic molecules. Bachelor’s thesis, Technische Universität Berlin (2013)

    Google Scholar 

  13. Gribonval, R., Nielsen, M.: Nonlinear approximation with dictionaries. I. Direct estimates. J. Fourier Anal. Appl. 10, 51–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grohs, P.: Continuous shearlet frames and resolution of the wavefront set. Monatsh. Math. 164, 393–426 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grohs, P.: Bandlimited shearlet frames with nice duals. J. Comput. Appl. Math. 244, 139–151 (2013)

    Article  MathSciNet  Google Scholar 

  16. Grohs, P.: Intrinsic localization of anisotropic frames. Appl. Comput. Harmon. Anal. 35, 264–283 (2013)

    Article  MathSciNet  Google Scholar 

  17. Grohs P., Kutyniok, G.: Parabolic molecules. Found. Comput. Math. 14(2), 299–337 (2014)

    Google Scholar 

  18. Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M.: \(\alpha \)-Molecules. Preprint (2013)

    Google Scholar 

  19. Guo, K., Kutyniok, G., Labate, D.: Sparse multidimensional representations using anisotropic dilation and shear operators. Wavelets and Splines, pp. 189–201 (2005). Nashboro Press, Athens (2006)

    Google Scholar 

  20. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math Anal. 39, 298–318 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Guo, K., Labate, D.: Representation of Fourier integral operators using shearlets. J. Fourier Anal. Appl. 14, 327–371 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guo, K., Labate, D.: The construction of smooth parseval frames of shearlets. Math. Model Nat. Phenom. 8, 82–105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Keiper, S.: A flexible shearlet transform—sparse approximation and dictionary learning. Bachelor’s thesis, Technische Universität Berlin (2012)

    Google Scholar 

  24. Kittipoom, P., Kutyniok, G., Lim, W.-Q.: Construction of compactly supported shearlet. Constr. Approx. 35, 21–72 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc. 361, 2719–2754 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kutyniok, G., Lemvig, J.: Optimally sparse approximations of 3D functions by compactly supported shearlet frames. SIAM J. Math. Anal. 44, 2962–3017 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kutyniok, G., Lim, W.-Q.: Compactly supported shearlets are optimally sparse. J. Approx. Theor. 163, 1564–1589 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kutyniok, G., Labate, D. (eds.): Shearlets: Multiscale Analysis for Multivariate Data. Birkhäuser, Boston (2012)

    Google Scholar 

  29. Smith, H.: A parametrix construction for wave equations with \(C^{1,1}\)-coefficients. Ann. Inst. Fourier 48, 797–835 (1998)

    Article  MATH  Google Scholar 

  30. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Grohs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. (2014). Parabolic Molecules: Curvelets, Shearlets, and Beyond. In: Fasshauer, G., Schumaker, L. (eds) Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-06404-8_9

Download citation

Publish with us

Policies and ethics