Skip to main content

Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces on Squares and Cubes

  • Conference paper
  • First Online:
Approximation Theory XIV: San Antonio 2013

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 83))

Abstract

We introduce new Hermite style and Bernstein style geometric decompositions of the cubic serendipity finite element spaces \({\mathcal S}_3(I^2)\) and \({\mathcal S}_3(I^3)\), as defined in the recent work of Arnold and Awanou [Found. Comput. Math. 11 (2011), 337–344]. The serendipity spaces are substantially smaller in dimension than the more commonly used bicubic and tricubic Hermite tensor product spaces—12 instead of 16 for the square and 32 instead of 64 for the cube—yet are still guaranteed to obtain cubic order a priori error estimates in \(H^1\) norm when used in finite element methods. The basis functions we define have a canonical relationship both to the finite element degrees of freedom as well as to the geometry of their graphs; this means the bases may be suitable for applications employing isogeometric analysis where domain geometry and functions supported on the domain are described by the same basis functions. Moreover, the basis functions are linear combinations of the commonly used bicubic and tricubic polynomial Bernstein or Hermite basis functions, allowing their rapid incorporation into existing finite element codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, D., Awanou, G.: The serendipity family of finite elements. Found. Comput. Math. 11(3), 337–344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold, D.N., Awanou, G.: Finite element differential forms on cubical meshes. Math. Comput. 83, 1551–1570 (2014)

    Google Scholar 

  3. Arnold, D., Falk, R., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21–26), 1660–1672 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bangerth, W., Hartmann, R., Kanschat, G.: Deal. ii—A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. (TOMS) 33(4), 24–es (2007)

    Google Scholar 

  5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  6. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40, 2nd edn. SIAM, Philadelphia (2002)

    Google Scholar 

  7. Ciarlet, P., Raviart, P.: General Lagrange and Hermite interpolation in \(\mathbb{R}^n\) with applications to finite element methods. Arch. Ration. Mechan. Anal. 46(3), 177–199 (1972)

    Google Scholar 

  8. Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Google Scholar 

  9. Evans, J.A., Hughes, T.J.R.: Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numer. Math. 123(2), 259–290 (2013)

    Google Scholar 

  10. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley (1993)

    Google Scholar 

  11. Hughes, T.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987)

    Google Scholar 

  12. Mandel, J.: Iterative solvers by substructuring for the \(p\)-version finite element method. Comput. Methods Appl. Mech. Eng. 80(1–3), 117–128 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mortenson, M.: Geometric Modeling, 3rd edn. Wiley, New York (2006)

    Google Scholar 

  14. Rand, A., Gillette, A., Bajaj, C.: Quadratic serendipity finite elements on polygons using generalized barycentric coordinates. Math. Comput. http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2014-02807-X/home.html (2014)

  15. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  16. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley-Interscience, New York (1991)

    Google Scholar 

  17. Zhang, Y., Liang, X., Ma, J., Jing, Y., Gonzales, M.J., Villongco, C., Krishnamurthy, A., Frank, L.R., Nigam, V., Stark, P., Narayan, S.M., McCulloch, A.D.: An atlas-based geometry pipeline for cardiac hermite model construction and diffusion tensor reorientation. Med. Image Anal. 16(6), 1130–1141 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Support for this work was provided in part by NSF Award 0715146 and the National Biomedical Computation Resource while the author was at the University of California, San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Gillette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gillette, A. (2014). Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces on Squares and Cubes. In: Fasshauer, G., Schumaker, L. (eds) Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-06404-8_7

Download citation

Publish with us

Policies and ethics