Skip to main content

A Generalized Class of Hard Thresholding Algorithms for Sparse Signal Recovery

  • Conference paper
  • First Online:
Approximation Theory XIV: San Antonio 2013

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 83))

Abstract

We introduce a whole family of hard thresholding algorithms for the recovery of sparse signals \({\mathbf {x}}\in {\mathbb C}^N\) from a limited number of linear measurements \({\mathbf y}= \mathbf{A}{\mathbf {x}}\in {\mathbb C}^m\), with \(m \ll N\). Our results generalize previous ones on hard thresholding pursuit algorithms. We show that uniform recovery of all \(s\)-sparse vectors \({\mathbf {x}}\) can be achieved under a certain restricted isometry condition. While these conditions might be unrealistic in some cases, it is shown that with high probability, our algorithms select a correct set of indices at each iteration, as long as the active support is smaller than the actual support of the vector to be recovered, with a proviso on the shape of the vector. Our theoretical findings are illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.math.drexel.edu/~jb3455/publi.html

  2. 2.

    Compared to real applications, we have access here to the true sparsity and the true support of the signal \({\mathbf {x}}\). This stopping criterion needs to be adapted for real-world examples.

References

  1. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27, 265–274 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouchot, J.L., Foucart, S., Hitczenko, P.: Hard thresholding pursuit algorithms: number of iterations. (2013, submitted)

    Google Scholar 

  3. Candès, E.J., Romberg, J.: \(\ell _1\)-magic: recovery of sparse signals via convex programming. http://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf4 (2005)

  4. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MATH  Google Scholar 

  5. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49, 2543–2563 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Foucart, S.: Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants. In: Neamtu, M., Schumaker, L. (eds.) Approximation Theory XIII: San Antonio 2010. Springer Proceedings in Mathematics, vol. 13, pp. 65–77. Springer, New York (2012)

    Google Scholar 

  9. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhaüser, Basel (2013)

    Google Scholar 

  10. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  12. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  13. Wipf, D., Nagarajan, S.: Iterative reweighted \(\ell _1\) and \(\ell _2\) methods for finding sparse solutions. IEEE J. Sel. Top. Sig. Process. 4, 317–329 (2010)

    Article  Google Scholar 

  14. Yang, J., Zhang, Y.: Alternating direction algorithms for \(ell\_1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang, T.: Sparse recovery with orthogonal matching pursuit under RIP. IEEE Trans. Inf. Theory 57, 6215–6221 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author wants to thank Simon Foucart and Michael Minner for their fruitful comments and suggested literature. The author is also thankful to the NSF for funding his work under the grant number (DMS-1120622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Bouchot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bouchot, JL. (2014). A Generalized Class of Hard Thresholding Algorithms for Sparse Signal Recovery. In: Fasshauer, G., Schumaker, L. (eds) Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-06404-8_4

Download citation

Publish with us

Policies and ethics