Skip to main content

Barycentric Interpolation

  • Conference paper
  • First Online:
Approximation Theory XIV: San Antonio 2013

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 83))

Abstract

This survey focusses on the method of barycentric interpolation, which ties up to the ideas that August Ferdinand Möbius published in his seminal work “Der barycentrische Calcul” in 1827. For univariate data, it leads to a special kind of rational interpolation which is guaranteed to have no poles and favorable approximation properties. We further discuss how to extend this idea to bivariate data, both for scattered data and for data given at the vertices of a polygon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that at least one of the \(w_i(x)\) must be negative if \(x\) is outside the convex hull of the nodes \(x_0,\ldots ,x_n\), which is physically impossible and motivates to call the \(w_i\) weights rather than masses.

  2. 2.

    Since \(n=m=1\), these are the unique barycentric basis functions, according to Möbius [24].

  3. 3.

    According to Henrici [17], this terminology goes back to Rutishauser [27] and is justified because the interpolating polynomial reproduces linear functions for \(n\ge 1\) and therefore is a barycentric interpolant.

References

  1. Berrut, J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15(1), 1–16 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berrut, J.P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61(9), 989–1000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berrut, J.P., Klein, G.: Recent advances in linear barycentric rational interpolation. J. Comput. Appl. Math. 259(Part A), 95–107 (2014)

    Google Scholar 

  4. Berrut, J.P., Mittelmann, H.D.: Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval. Comput. Math. Appl. 33(6), 77–86 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Google Scholar 

  6. Bos, L., De Marchi, S., Hormann, K.: On the Lebesgue constant of Berrut’s rational interpolant at equidistant nodes. J. Comput. Appl. Math. 236(4), 504–510 (2011)

    Google Scholar 

  7. Bos, L., De Marchi, S., Hormann, K., Klein, G.: On the Lebesgue constant of barycentric rational interpolation at equidistant nodes. Numer. Math. 121(3), 461–471 (2012)

    Google Scholar 

  8. Bos, L., De Marchi, S., Hormann, K., Sidon, J.: Bounding the Lebesgue constant for Berrut’s rational interpolant at general nodes. J. Approx. Theory 169, 7–22 (2013)

    Google Scholar 

  9. Delaunay, B.: Sur la sphère vide. A la mémoire de Georges Voronoï. Bull. Acad. Sci. URSS 6, 793–800 (1934)

    Google Scholar 

  10. Dell’Accio, F., Di Tommaso, F., Hormann, K.: On the approximation order of triangular Shepard interpolation. Department of Mathematics, Università della Calabria, Technical Report (2013)

    Google Scholar 

  11. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Floater, M.S.: Wachspress and mean value coordinates. In: Approximation Theory XIV: San Antonio 2013, Springer Proceedings in Mathematics, pp. 81–101. Springer, New York (2014)

    Google Scholar 

  13. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107(2), 315–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Floater, M.S., Hormann, K., Kós, G.: A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 24(1–4), 311–331 (2006)

    Article  MATH  Google Scholar 

  15. Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11), 1691–1704 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Güttel, S., Klein, G.: Convergence of linear barycentric rational interpolation for analytic functions. SIAM J. Numer. Anal. 50(5), 2560–2580 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Henrici, P.: Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numer. Math. 33(2), 225–234 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4), 547–556 (2004)

    Google Scholar 

  19. Hormann, K., Floater, M.S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4), 1424–1441 (2006)

    Article  Google Scholar 

  20. Hormann, K., Klein, G., De Marchi, S.: Barycentric rational interpolation at quasi-equidistant nodes. Dolomites Res. Notes Approx. 5, 1–6 (2012)

    Google Scholar 

  21. Ibrahimoglu, B.A., Cuyt, A.: Sharp bounds for Lebesgue constants of barycentric rational interpolation. Department of Mathematics and Computer Science, Universiteit Antwerpen, Techical Report (2013)

    Google Scholar 

  22. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications, Mineola (1994)

    Google Scholar 

  23. Little, F.F.: Convex combination surfaces. In: Barnhill, R.E., Boehm, W. (eds.) Surfaces in Computer Aided Geometric Design, pp. 99–107. North-Holland, Amsterdam (1983)

    Google Scholar 

  24. Möbius, A.F.: Der barycentrische Calcul. Johann Ambrosius Barth Verlag, Leipzig (1827)

    Google Scholar 

  25. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  27. Rutishauser, H.: Vorlesungen über numerische Mathematik, Band 1: Gleichungssysteme, Interpolation und Approximation, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe, vol. 50. Birkhäuser Verlag, Basel (1976)

    Google Scholar 

  28. Schneider, C., Werner, W.: Some new aspects of rational interpolation. Math. Comput. 47(175), 285–299 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, pp. 517–524. ACM Press, New York (1968)

    Google Scholar 

  30. Szabados, J., Vértesi, P.: Interpolation of Functions. World Scientific, Singapore (1990)

    Google Scholar 

  31. Wachspress, E.L.: A Rational Finite Element Basis, Mathematics in Science and Engineering, vol. 114. Academic Press, New York (1975)

    Google Scholar 

  32. Zhang, R.J.: An improved upper bound on the Lebesgue constant of Berrut’s rational interpolation operator. J. Comput. Appl. Math. 255, 652–660 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hormann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hormann, K. (2014). Barycentric Interpolation. In: Fasshauer, G., Schumaker, L. (eds) Approximation Theory XIV: San Antonio 2013. Springer Proceedings in Mathematics & Statistics, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-06404-8_11

Download citation

Publish with us

Policies and ethics