Skip to main content

Meshless Methods Introduction

  • Chapter
  • First Online:
Book cover Meshless Methods in Biomechanics

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 16))

Abstract

In this chapter the most important meshless method concepts are detailed introduced. The chapter stars with a generic description on the meshless procedure. Additionally, it is presented a brief comparison between procedures of the finite element method (FEM) and the meshless method. Afterwards the meshless method nodal connectivity is addressed. Techniques to enforce the nodal connectivity in meshless methods are presented, such as the classic “influence-domain” concept and the recently developed “influence-cell” methodology. Then, it is presented a broad description of the integration schemes used in the numerical examples shown in this book: the Gauss-Legendre quadrature scheme and a flexible nodal based integration scheme. The final section of this chapter presents explicitly the generic numerical implementation of approximation and interpolation meshless methods based on the Galerkin weak formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu GR (2002) A point assembly method for stress analysis for two-dimensional solids. Int J Solid Struct 39:261–276

    Article  MATH  Google Scholar 

  2. Liu GR (2002) Mesh free methods-moving beyond the finite element method. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin method. Int J Numer Meth Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466

    Article  MATH  Google Scholar 

  5. Sze KY, Chen JS, Sheng N, Liu XH (2004) Stabilized conforming nodal integration: exactness and variational. Finite Elem Anal Des 41(2):147–171

    Article  Google Scholar 

  6. Elmer W, Chen JS, Puso M, Taciroglu E (2012) A stable, meshfree, nodal integration method for nearly incompressible solids. Finite Elem Anal Des 51:81–85

    Article  Google Scholar 

  7. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20(6):1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  8. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648

    Article  MATH  Google Scholar 

  10. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Meth Eng 50:937–951

    Article  MATH  Google Scholar 

  12. Dinis LMJS, Jorge RMN, Belinha J (2007) Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput Methods Appl Mech Eng 196(13–16):2009–2028

    Article  MATH  Google Scholar 

  13. Sibson R (1981) A brief description of natural neighbor interpolation. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 21–36

    Google Scholar 

  14. Boots BN (1986) Voronoï (Thiessen) polygons. Geo Books, Norwich

    Google Scholar 

  15. Preparata FP, Shamos MI (1985) Computational geometry—an introduction. Springer, New York

    Google Scholar 

  16. Okabe A, Boots BN, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applications of Voronoï diagrams, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  17. Lawson CL (1977) Software for C1 surface interpolation. In: Rice JR (ed) Mathematical software III, 3rd edn. Academic Press, New York

    Google Scholar 

  18. Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, Oxford

    Google Scholar 

  19. Dinis LMJS, Jorge RMN, Belinha J (2007) Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput Methods Appl Mech Eng 196(13–16):2009–2028

    Article  MATH  Google Scholar 

  20. Dinis LMJS, Jorge RMN, Belinha J (2008) Analysis of plates and laminates using the natural neighbour radial point interpolation method. Eng Anal Bound Elem 32(3):267–279

    Article  MATH  Google Scholar 

  21. Dinis LMJS, Jorge RMN, Belinha J (2008) The radial natural neighbour interpolators extended to elastoplasticity. In: Ferreira AJM, Kansa EJ, Fasshauer GE, Leitao VMA (eds) Progress on meshless methods. Springer, Netherlands, pp 175–198

    Google Scholar 

  22. Dinis LMJS, Jorge RMN, Belinha J (2009) The natural neighbour radial point interpolation method: dynamic applications. Eng Comput 26(8):911–949

    Article  MATH  Google Scholar 

  23. Dinis LMJS, Jorge RMN, Belinha J (2009) Large deformation applications with the radial natural neighbours interpolators. Comput Modell Eng Sci 44(1):1–34

    MathSciNet  Google Scholar 

  24. Dinis LMJS, Jorge RMN, Belinha J (2010) An unconstrained third-order plate theory applied to functionally graded plates using a meshless method. Mech Adv Mater Struct 17:1–26

    Article  Google Scholar 

  25. Dinis LMJS, Jorge RMN, Belinha J (2010) Composite laminated plates: a 3D natural neighbour radial point interpolation method approach. J Sandwich Struct Mater 12(2):119–138

    Article  Google Scholar 

  26. Dinis LMJS, Jorge RMN, Belinha J (2010) A 3D shell-like approach using a natural neighbour meshless method: isotropic and orthotropic thin structures. Compos Struct 92(5):1132–1142

    Article  Google Scholar 

  27. Dinis LMJS, Jorge RMN, Belinha J (2011) The dynamic analysis of thin structures using a radial interpolator meshless method. In: Vasques CMA, Dias Rodrigues J (eds) Vibration and strucutural acoustics analysis. Springer, Netherlands, pp 1–20

    Chapter  Google Scholar 

  28. Dinis LMJS, Jorge RMN, Belinha J (2011) Static and dynamic analysis of laminated plates based on an unconstrained third order theory and using a radial point interpolator meshless method. Comput Struct 89(19–20):1771–1784

    Article  Google Scholar 

  29. Dinis LMJS, Jorge RMN, Belinha J (2011) A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures. Thin-Walled Struct 49(1):185–196

    Article  Google Scholar 

  30. Belinha J, Jorge RMN, Dinis LMJS (2013) A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law. Comput Methods Biomech Biomed Eng 16(11):1170–1184

    Google Scholar 

  31. Belinha J, Jorge RMN, Dinis LMJS (2012) Bone tissue remodelling analysis considering a radial point interpolator meshless method. Eng Anal Boundary Elem 36(11):1660–1670

    Article  MathSciNet  Google Scholar 

  32. Zienkiewicz OC, Taylor RL (1994) The finite element method, 4th edn. McGraw-Hill, London

    Google Scholar 

  33. Moreira S, Belinha J, Dinis LMJS, Jorge RMN (2014) Analysis of laminated beams using the natural neighbour radial point interpolation method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2014. http://dx.doi.org/10.1016/j.rimni.2013.02.002

  34. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  35. Babuška I, Banerjee U, Osborn JE, Zhang Q (2009) Effect of numerical integration on meshless methods. Comput Methods Appl Mech Eng 198(37–40):2886–2897

    Article  MATH  Google Scholar 

  36. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1–4):49–74

    Article  MATH  MathSciNet  Google Scholar 

  37. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    Article  MATH  MathSciNet  Google Scholar 

  38. De S, Bathe KJ (2001) The method of finite spheres with improved numerical integration. Comput Struct 79(22–25):2183–2196

    Article  MathSciNet  Google Scholar 

  39. Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration Galerkin mesh-free methods. Int J Numer Meth Eng 53(12):2587–2615

    Article  MATH  Google Scholar 

  40. Dai KY, Liu GR, Han X, Li Y (2006) Inelastic analysis of 2D solids using a weak-form RPIM based on deformation theory. Comput Methods Appl Mech Eng 195:4179–4193

    Article  MATH  Google Scholar 

  41. Liu GR, Zhang GY, Wang YY, Zhong ZH, Li GY, Han X (2007) A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int J Solids Struct 44(11–12):3840–3860

    Article  MATH  Google Scholar 

  42. Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191:2611–2630

    Article  MATH  Google Scholar 

  43. Belinha J, Jorge RMN, Dinis LMJS (2013) The natural radial element method. Int J Numer Meth Eng 93(12):1286–1313

    Article  MathSciNet  Google Scholar 

  44. Belinha J, Jorge RMN, Dinis LMJS (2013) Composite laminated plate analysis using the natural radial element method. Compos Struct 103(1):50–67

    Article  Google Scholar 

  45. Belinha J, Jorge RMN, Dinis LMJS (2013) Analysis of thick plates by the natural radial element method. Int J Mech Sci 76(1):33–48

    Article  Google Scholar 

  46. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element free Galerkin method. Arch Comput Mech 5(3):207–241

    Article  MathSciNet  Google Scholar 

  47. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Netherlands

    Google Scholar 

  48. Zienkiewicz OC, Taylor RL (1994) The finite element method, 4th edn. McGraw-Hill, London

    Google Scholar 

  49. Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222

    Article  MATH  MathSciNet  Google Scholar 

  50. Belytschko T, Gu L, Lu YY (1994) Fracture and crack growth by element free Galerkin methods. Modell Simul Mater Sci Eng 2(3A):519–534

    Article  MathSciNet  Google Scholar 

  51. Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113(3–4):397–414

    Article  MATH  MathSciNet  Google Scholar 

  52. Mukherjee YX, Mukherjee S (1997) On boundary conditions in the element-free Galerkin method. Comput Mech 19(4):264–270

    Article  MATH  MathSciNet  Google Scholar 

  53. Lu YY, Belytschko T, Tabbara M (1995) Element-free Galerkin method for wave propagation and dynamic fracture. Comput Methods Appl Mech Eng 126(1–2):131–153

    Article  MATH  MathSciNet  Google Scholar 

  54. Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1–2):133–145

    Article  MATH  MathSciNet  Google Scholar 

  55. Hegen D (1996) Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng 135:143–166

    Article  MATH  Google Scholar 

  56. Gavete L, Benito JJ, Falcón S, Ruiz A (2000) Penalty functions in constrained variational principles for element free Galerkin method. Eur J Mech A Solids 19(4):699–720

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Belinha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belinha, J. (2014). Meshless Methods Introduction. In: Meshless Methods in Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-06400-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06400-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06399-7

  • Online ISBN: 978-3-319-06400-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics