Skip to main content

Combined Uses of Supervised Classification and Normalized Difference Vegetation Index Techniques to Monitor Land Degradation in the Saloum Saline Estuary System

  • Chapter
  • First Online:

Part of the book series: Estuaries of the World ((EOTW))

Abstract

Saltwater contamination constitutes a serious problem in Saloum estuary, due to the intermittent and reverse tide flows of the Saloum River. This phenomenon is caused by the runoff deficit, which forces the advance of saltwater 60 km upstream, contaminating surface water and thus causing the degradation of biodiversity and large areas of agricultural soils in this region. The present study aims to evaluate the consequences of saltwater contamination in the last three decades in this estuary by assessing the land-cover dynamics. Thus, latter consists of tracking the landscape-changing process over time to identify land-cover transitions. These transitions are closely related to the ecosystem-setting condition and can be used to assess the combined impacts of both natural and human-induced phenomena over a given period of time. In this study, special attention was given to mangrove degradation and to temporal progression of the salty barren soils locally called “tan”. The loss of mangrove areas to tan and the general increase in salty barren soil areas can reflect the increase in the level of salinization in the study area over the time period under consideration. To fulfill this objective, four Landsat satellite images from the same season in the years 1984, 1992, 1999, and 2010 were used to infer time series land-use and land-cover maps of the Saloum estuary area. In addition to satellite imagery, rainfall records were used to evaluate climatic variation in terms of high-to-low precipitation during the time span considered. Spectral analysis indicated that from 1984 to 2010, mangroves and savanna/rain-fed agriculture are converted to “tan” (denuded and salty soils). In addition, these results showed that significant changes in land use/land cover occur within the whole estuary system and reflecting therefore environmental degradation, such as land desertification and salinization, and vegetation degradation which reflect the advanced of salinity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JR (1977) Land use and land cover changes. A framework for monitoring. J Res Geol Surv 5:143–153

    Google Scholar 

  • Aplin P, Atkinson PM, Curran PJ (1999) Per-field classification of land use using the forthcoming very fine spatial resolution satellite sensors: problems and potential solutions. In: Atkinson PM, Tate NJ (eds) Advances in remote sensing and GIS analysis. Wiley, New York, pp 219–239

    Google Scholar 

  • Barusseau JP, Diop EHS, Saos JL (1985) Evidence of dynamics reversal in tropical estuaries, geomorphological and sedimentological consequences (Saloum and Casamance Rivers, Senegal). Sedimentology 32(4):543–552

    Article  Google Scholar 

  • Carrão H, Araújo A, Caetano M (2008) Land cover classification in Portugal with intra-annual time series of MERIS Images. In: Proceedings of the 2nd MERIS/AATSR user workshop Frascati, Italy, 22–26 Sept 2008

    Google Scholar 

  • Chen D, Stow DA (2002) The effect of training strategies on supervised classification at different spatial resolution. Photogram Eng Remote Sens 68:1155–1162

    Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46

    Article  Google Scholar 

  • Congalton RG, Green K (1993) A practical look at the sources of confusion in error matrix generation. Photogram Eng Remote Sens 59:641–644

    Google Scholar 

  • Coppin PR, Bauer ME (1994) Processing of multitemporal landsat TM imagery to optimize extraction of forest cover change features. IEEE Trans Geosci Remote Sens 32:918–927

    Article  Google Scholar 

  • Coppin PI, Jonckheere K, Nackaerts BM, Lambin E (2004) Digital change detection methods in ecosystem monitoring; a review. Int J Remote Sens 25:1565–1596

    Article  Google Scholar 

  • Datta D, Deb S (2012) Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geo-spat Inf Sci 15(4):241–250

    Article  Google Scholar 

  • Diaw AT, Diop N, Thiam MD, Thomas YF (1991) Remote sensing of spit development: a case study of Sangomar sand spit, Senegal. Z Geomorph Berlin-Stuttg 81:115–124

    Google Scholar 

  • Dieye EHB, Diaw AT, Sané T, Ndour N (2013) Dynamique de la mangrove de l’estuaire du Saloum (Sénégal) entre 1972 et 2010. Eur J Geogr. http://cybergeo.revues.org/25671; doi: 10.4000/cybergeo.25671

  • Diop ES (1986) Estuaires holocènes tropicaux. Etude géographique physique comparée des rivières du Sud du Saloum (Sénégal) à la Mellcorée (République de Guinée). Thèse Doctorat es Lettres Université L Pasteur Strasbourg. Tome I, p 522

    Google Scholar 

  • Faye S, Cissé Faye S, Ndoye S, Faye A (2003) Hydrogeochemistry of the Saloum (Senegal) superficial coastal aquifer. Environ Geol 44:127–136

    CAS  Google Scholar 

  • Faye S, Maloszewski P, Stichler W, Trimborn P, Cissé Faye S, Gaye CB (2004) Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Sci Total Environ J Springer. doi:10.1016/j.scitotenv.2004.10.00,17p

    Google Scholar 

  • Faye S, Diaw M, Ndoye S, Malou R, Faye A (2009) Impacts of climate change on groundwater recharge and salinization of groundwater resources in Senegal. In: Groundwater and climate in Africa proceeding of the Kampala conference. IAHS Publ 334, June 2008

    Google Scholar 

  • Filella I, Penuelas J, Llorens L, Estiarte M (2004) Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean Shrubland submitted to experimental warming and drought. Remote Sens Environ 90(3):308–318

    Article  Google Scholar 

  • Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogram Eng Remote Sens 70:627–633

    Article  Google Scholar 

  • Franklin SE, Peddle DR, Dechka JA, Stenhouse GB (2002) Evidential reasoning with Landsat TM, DEM and GIS data for land cover classification in support of grizzly bear habitat mapping. Int J Remote Sens 23:4633–4652

    Article  Google Scholar 

  • Gallego FJ (2004) Remote sensing and land cover area estimation. Int J Remote Sens 25:3019–3047

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources. Human causes, extent, management and case studies. Sydney University of New South Wales Press Ltd.

    Google Scholar 

  • Gong P, Howarth PJ (1992) Frequency-based contextual classification and gray-level vector reduction for land-use identification. Photogram Eng Remote Sens 58:423–437

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, and prediction. Springer series in statistics, Springer. ISBN-10 0387848570

    Google Scholar 

  • Ingram K, Knapp E, Robinson JW (1981) Change detection technique development for improved urbanized area delineation. Technical memorandum CSC/TM-81/6087. Silver Spring, Computer Science Corporation, MD, USA

    Google Scholar 

  • IPCC (2007) The physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 747–845

    Google Scholar 

  • Jensen J R (1996) Introductory digital image processing. Prentice Hall, New Jersey, USA

    Google Scholar 

  • Johnson RA, Wichern DW (1998) Applied multivariate statistical analysis. Prentice Hall, pp 816

    Google Scholar 

  • Ketchum BH (1983) Estuarine characteristics, estuaries and enclosed seas. Elsevier Science Publication Comp, Amsterdam, pp 1–14

    Google Scholar 

  • Kontoes C, Wilkinson G, Burrill A, Goffredo S, Megier J (1993) An experimental system for the integration of GIS data in knowledge-based image analysis for remote sensing of agriculture. Int J Geogr Inf Syst 7:247–262

    Article  Google Scholar 

  • Kuncheva L (2004) Combining pattern classifiers methods algorithms, 1st edn. Wiley-Interscience. ISBN-10: 0471210788

    Google Scholar 

  • Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Wiley, Hoboken

    Book  Google Scholar 

  • Lu D, Weng (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2003) Change detection techniques. Int J Remote Sens 25:2365–2407

    Article  Google Scholar 

  • Lu D, Mausel P, Batistella M, Moran E (2004a) Comparison of land-cover classification methods in the Brazilian Amazon Basin. Photogram Eng Remote Sens 70:723–731

    Article  Google Scholar 

  • Lu D, Valladares G, Li GS, Batistella M (2004b) Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degrad Dev 15:499–512. doi:10.1002/ldr.634

    Article  Google Scholar 

  • Lunetta R, Elvidge C (1998) Remote sensing change detection: environmental monitoring and application. Taylor and Francis, Sleeping Bear Press, Inc.

    Google Scholar 

  • Mather PM (2004) Computer processing of remotely-sensed images: an introduction, 3rd edn. Wiley, Chichester

    Google Scholar 

  • McDowell DM, O’Connor BA (1983) Gidravlika prilivnykh ust’ev rek (hydraulics behaviour of estuaries). Energoatomizdat, Moscow

    Google Scholar 

  • Mikhailov VN, Isupova MV (2008) Hypersalinization of river estuaries in West Africa. Water Resour 35(4):367–385

    CAS  Google Scholar 

  • Nelson RF (1983) Detecting forest canopy change due to insect activity using landsat MSS. Photogram Eng Remote Sens 49:1303–1314

    Google Scholar 

  • Overpeck JT, Otto-Bliesner B, Miller GH, Mush DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311(5758):1747–1750. doi:10.1126/science.1115159

    Article  CAS  Google Scholar 

  • Pagès J, Citeau J (1990) Rainfall and salinity of a Sahelian estuary between 1927 and 1987. Hydrol J 113(1–4):325–341

    Article  Google Scholar 

  • Pagès J, Debenay JP, Lebrusq JI (1987) L’environnement estuarien de la Casamance. Rev Hydrobiol Trop 20(3–4):191–202

    Google Scholar 

  • Pal M, Mather PM (2004) Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener Comput Syst 20:1215–1225

    Article  Google Scholar 

  • Pan W, Xu H, Chen H, Zhang C, Chen J (2011) Dynamics of land cover and land use change in Quanzhou city of SE China from landsat observations. Electr Eng 40371107:1019–1027

    Google Scholar 

  • Petropoulos G, Partsinevelos P, Mitraka Z (2012) Change detection of surface mining activity and reclamation based on a machine learning approach of multitemporal landsat TM imagery. Geocarto Int. doi:10.1080/10106049.2012.706648

    Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510

    Article  Google Scholar 

  • Pritchard DW (1967) What is an estuary: physical viewpoint, estuaries. American Association Advanced Science Publication, Washington, DC

    Google Scholar 

  • Pu R, Gong P, Tian Y, Miao X, Raymond IR, Carruthers GL, Anderson GL (2008) Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA. Int J Remote Sens 29(14):3987–4011

    Article  Google Scholar 

  • Ridd PV, Sam R (1996) Profiling groundwater salt concentration in mangrove swamps and tropical salt flats. Estuar Coast Shelf Sci 43:627–635

    Article  Google Scholar 

  • Ridd PV, Stieglitz T (2002) Dry season salinity changes in arid estuaries fringed by mangroves and saltflats. Estuar Coast Shelf Sci 54:1039–1049

    Article  CAS  Google Scholar 

  • Sam R, Ridd PV (1998) Spatial variations of groundwater salinity in a mangrove salt flat System Cocoa Creeks Australia. Mangroves Salt Marshes 2:121–132

    Article  Google Scholar 

  • San Miguel-Ayanz J, Biging GS (1997) Comparison of single-stage and multi-stage classification approaches for cover type mapping with TM and SPOT data. Remote Sens Environ 59:92–104

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003

    Article  Google Scholar 

  • Smits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach. Int J Remote Sens 20(8):1461–1486

    Article  Google Scholar 

  • Stuckens J, Coppin PR, Bauer ME (2000) Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens Environ 71:282–296

    Article  Google Scholar 

  • Tucker CJ (1978) A comparison of satellite sensor bands for vegetation monitoring. Photogram Eng Remote Sens 44(11):1369–1380

    Google Scholar 

  • Wang J, Rich PM, Price KP (2003) Temporal responses of NDVI to precipitation and temperature in the central great plains, USA. Int J Remote Sens 24(11):2345–2364

    Article  Google Scholar 

  • Wolanski E (1986) An evaporation-driven salinity maximum zone in Australian tropical estuaries. Estuar Coast Shelf Sci 22:415–424

    Article  CAS  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64(1–2):41–58

    Article  Google Scholar 

  • Zinnert JC, Shiflett SA, Vick JK, Young DR (2011) Woody vegetative cover dynamics in response to recent climate change on an Atlantic coast barrier island: a remote sensing approach. Geocarto Int 26(8):595–612

    Article  Google Scholar 

Download references

Acknowledgements

We thank ESA for providing us with Landsat imagery, TIGER capacity building, and IGP (Portuguese Geographic Institute) for giving us training job to enhance our knowledge in remote sensing and GIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndeye Maguette Dieng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dieng, N.M., Dinis, J., Faye, S., Gonçalves, M., Caetano, M. (2014). Combined Uses of Supervised Classification and Normalized Difference Vegetation Index Techniques to Monitor Land Degradation in the Saloum Saline Estuary System. In: Diop, S., Barusseau, JP., Descamps, C. (eds) The Land/Ocean Interactions in the Coastal Zone of West and Central Africa. Estuaries of the World. Springer, Cham. https://doi.org/10.1007/978-3-319-06388-1_5

Download citation

Publish with us

Policies and ethics