Skip to main content

Kondo Physics of Single Sub-surface Atoms

  • Chapter
  • First Online:
Scanning Tunneling Spectroscopy of Magnetic Bulk Impurities

Part of the book series: Springer Theses ((Springer Theses))

  • 604 Accesses

Abstract

The Kondo effect has regained interest due to scanning tunneling spectroscopy (STS) experiments carried out on single magnetic impurities, which were adsorbed on a noble metal surface [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Later on it turned out that in reference [1] no single cerium atoms has been investigated but rather Ce clusters [3]. The observed spectroscopic signatures are not related to single-impurity Kondo physics but to clusters. Nevertheless the publication triggered a lot of research interest and studies of magnetic atoms and molecules adsorbed on noble metal surfaces.

  2. 2.

    Temperature dependent properties of various systems in the Kondo regime follow a universal function that depends only on the ratio \(T/T_{k}\).

  3. 3.

    For well-defined parameters the Anderson model can be transformed to the s-d model [24].

  4. 4.

    According to R. Žitko and T. Pruschke the ratio between the half-width at half maximum (HWHM) and the Kondo temperature is \(\Delta_{k} = 3.7\,k_{B} T_{k}\) [41].

References

  1. Li J, Schneider W-D, Berndt R, Delley B (1998) Phys Rev Lett 80:2893

    Article  ADS  Google Scholar 

  2. Madhavan V, Chen W, Jamneala T, Crommie MF, Wingreen NS (1998) Science 280:567

    Article  ADS  Google Scholar 

  3. Ternes M, Heinrich AJ, Schneider W-D (2009) J Phys: Condens Matter 21:053001

    ADS  Google Scholar 

  4. Zhao A, Li Q, Chen L, Xiang H, Wang W, Pan S, Wang B, Xiao X, Yang J, Hou JG, Zhu Q (2005) Science 309:1542

    Article  ADS  Google Scholar 

  5. Wahl P, Diekhöner L, Wittich G, Vitali L, Schneider MA, Kern K (2005) Phys Rev Lett 95:166601

    Article  ADS  Google Scholar 

  6. Iancu V, Deshpande A, Hla S-W (2006) Nano Lett 6:820

    Article  ADS  Google Scholar 

  7. Iancu V, Deshpande A, Hla S-W (2006) Phys Rev Lett 97:266603

    Article  ADS  Google Scholar 

  8. Knorr N, Schneider MA, Diekhöner L, Wahl P, Kern K (2002) Phys Rev Lett 88:096804

    Article  ADS  Google Scholar 

  9. Henzl J, Morgenstern K (2007) Phys Rev Lett 98:266601

    Article  ADS  Google Scholar 

  10. Manoharan HC, Lutz CP, Eigler DM (2000) Nature 403:512

    Article  ADS  Google Scholar 

  11. Újsághy O, Kroha J, Szunyogh L, Zawadowski A (2000) Phys Rev Lett 85:2557

    Article  ADS  Google Scholar 

  12. Schiller A, Hershfield S (2000) Phys Rev B 61:9036

    Article  ADS  Google Scholar 

  13. Plihal M, Gadzuk JW (2001) Phys Rev B 63:085404

    Article  ADS  Google Scholar 

  14. Limot L, Berndt R (2004) Appl Surf Sci 237:572

    Article  ADS  Google Scholar 

  15. Schneider M, Vitali L, Wahl P, Knorr N, Diekhöner L, Wittich G, Vogelgesang M, Kern K (2005) Appl Phys A Mater Sci Process 80:937

    Article  ADS  Google Scholar 

  16. Li Q, Yamazaki S, Eguchi T, Kim H, Kahng S-J, Jia JF, Xue QK, Hasegawa Y (2009) Phys Rev B 80:115431

    Article  ADS  Google Scholar 

  17. Daybell MD, Steyert WA (1968) Rev Mod Phys 40:380

    Article  ADS  Google Scholar 

  18. Prüser H, Wenderoth M, Dargel PE, Weismann A, Peters R, Pruschke T, Ulbrich RG (2011) Nature Phys 7:203

    Article  ADS  Google Scholar 

  19. Prüser H, Wenderoth M, Weismann A, Ulbrich RG (2012) Phys Rev Lett 108:166604

    Article  ADS  Google Scholar 

  20. Hewson AC (1993) The Kondo problem to heavy fermions. Cambridge University Press, Cambridge

    Google Scholar 

  21. De Haas W, Van Den Berg G (1936) Physica 3:440

    Article  ADS  Google Scholar 

  22. Pearson W (1955) Philos Mag Ser 7(46):911

    Google Scholar 

  23. Zener C (1951) Phys Rev 82:403

    Article  ADS  Google Scholar 

  24. Schrieffer JR, Wolff PA (1966) Phys Rev 149:491

    Article  ADS  Google Scholar 

  25. Anderson PW (1961) Phys Rev 124:41

    Article  ADS  MathSciNet  Google Scholar 

  26. Kondo J (1964) Progress Theoret Phys 32:37

    Article  ADS  Google Scholar 

  27. Kondo J (2006) Proc Japan Acad B 82:328

    Article  Google Scholar 

  28. Wilson KG (1975) Rev Mod Phys 47:773

    Article  ADS  Google Scholar 

  29. Bulla R, Costi TA, Pruschke T (2008) Rev Mod Phys 80:395

    Article  ADS  Google Scholar 

  30. Pruschke T, Grewe N (1989) Zeitschrift für Physik B Condensed Matter 74:439

    Article  ADS  Google Scholar 

  31. Silver RN, Gubernatis JE, Sivia DS, Jarrell M (1990) Phys Rev Lett 65:496

    Article  ADS  Google Scholar 

  32. Reinert F, Hüfner S (2005) New J Phys 7:97

    Article  Google Scholar 

  33. Patthey F, Delley B, Schneider WD, Baer Y (1985) Phys Rev Lett 55:1518

    Article  ADS  Google Scholar 

  34. Patthey F, Schneider WD, Baer Y, Delley B (1987) Phys Rev Lett 58:2810

    Article  ADS  Google Scholar 

  35. Patthey F, Imer J-M, Schneider W-D, Beck H, Baer Y, Delley B (1990) Phys Rev B 42:8864

    Article  ADS  Google Scholar 

  36. Ehm D, Hüfner S, Reinert F, Kroha J, Wölfle P, Stockert O, Geibel C, v. Löhneysen (2007) H Phys Rev B 76:045117

    Google Scholar 

  37. Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner MA (1998) Nature 391:156

    Article  ADS  Google Scholar 

  38. Cronenwett SM, Oosterkamp TH, Kouwenhoven LP (1998) Science 281:540

    Article  ADS  Google Scholar 

  39. Leo Kouwenhoven LG (2001) Phys World 14:33

    Google Scholar 

  40. Pustilnik M, Glazman L (2004) J Phys: Condens Matter 16:R513

    ADS  Google Scholar 

  41. Žitko R, Pruschke T (2009) Phys Rev B 79:085106

    Article  ADS  Google Scholar 

  42. Affleck I, Borda L, Saleur H (2008) Phys Rev B 77:180404

    Article  ADS  Google Scholar 

  43. Büsser CA, Martins GB, Costa Ribeiro L, Vernek E, Anda EV, Dagotto E (2010) Phys Rev B 81:045111

    Google Scholar 

  44. Mahan GD (2000) Many particle physics, 3rd edn. Springer, New York

    Google Scholar 

  45. Economou EN (2006) Green’s functions in quantum physics, 3rd edn. Springer, New York

    Google Scholar 

  46. Friedel J (1958) Il Nuovo Cimento 7:287

    Article  Google Scholar 

  47. Frota HO, Oliveira LN (1986) Phys Rev B 33:7871

    Article  ADS  Google Scholar 

  48. Frota HO (1992) Phys Rev B 45:1096

    Article  ADS  Google Scholar 

  49. Weismann A (2008) Scanning tunneling Spectroscopy on subsurface magnetic atoms in copper: electron focusing and Kondo Effect. PhD thesis, Georg-August-Universität zu Göttingen

    Google Scholar 

  50. Dargel PE (2012) Spectral functions of low-dimensional quantum systems. PhD thesis, Georg-August-Universität zu Göttingen

    Google Scholar 

  51. Lin C-Y, Neto AHC, Jones BA (2006) Phys Rev Lett 97:156102

    Article  ADS  Google Scholar 

  52. Fu Y-S, Ji S-H, Chen X, Ma X-C, Wu R, Wang C-C, Duan W-H, Qiu X-H, Sun B, Zhang P, Jia J-F, Xue Q-K (2007) Phys Rev Lett 99:256601

    Article  ADS  Google Scholar 

  53. Žitko R (2011) Phys Rev B 84:195116

    Article  ADS  Google Scholar 

  54. Fano U (1961) Phys Rev 124:1866

    Article  ADS  MATH  Google Scholar 

  55. Surer B, Troyer M, Werner P, Wehling TO, Läuchli AM, Wilhelm A, Lichtenstein AI (2012) Phys Rev B 85:085114

    Article  ADS  Google Scholar 

  56. Segall B (1962) Phys Rev 125:109

    Article  ADS  Google Scholar 

  57. Franke KJ, Schulze G, Pascual JI (2011) Science 332:940

    Article  ADS  Google Scholar 

  58. Minamitani E, Tsukahara N, Matsunaka D, Kim Y, Takagi N, Kawai M (2012) Phys Rev Lett 109:086602

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Prüser .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prüser, H. (2015). Kondo Physics of Single Sub-surface Atoms. In: Scanning Tunneling Spectroscopy of Magnetic Bulk Impurities. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06385-0_4

Download citation

Publish with us

Policies and ethics