Skip to main content

Linear Response Methods in Quantum Chemistry

  • Chapter
  • First Online:

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Linear response methods allow for the calculation of various observables connected to the electronic response to an external perturbation. In this chapter, we give an introduction to density functional perturbation theory (DFPT) and several of its applications. After a general derivation of the central DFPT equations we explicitly discuss the calculation of nuclear magnetic resonance (NMR) chemical shifts for the determination of supramolecular packing motifs. In the last part of our chapter, we outline an approach to the calculation of van der Waals interactions from first principles using DFPT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersson, Y., Langreth, D. Lundqvist, B.I.: van der Waals interactions in density-functional theory. Phys. Rev. Lett. 76(1), 102–105 (1996)

    Google Scholar 

  2. Baroni, S., De Gironcoli, S., Del Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  3. DiLabio, G.A.: Accurate treatment of van der Waals interactions using standard density functional theory methods with effective core-type potentials: application to carbon-containing dimers. Chem. Phys. Lett. 455(4–6), 348–353 (2008)

    Article  ADS  Google Scholar 

  4. Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  5. Ditchfield, R.: Gauge including atomic orbitals. J. Chem. Phys. 56, 5688 (1972)

    Article  ADS  Google Scholar 

  6. Dudenko, D., Kiernowski, A., Shu, J., Pisula, W., Sebastiani, D., Spiess, H.W., Hansen, M.R.: A strategy for revealing the packing in semicrystalline \(\pi \)-conjugated polymers: crystal structure of bulk Poly-3-hexyl-thiophene (P3HT). Angew. Chem. Int. Ed. 51, 11068–11072 (2012)

    Article  Google Scholar 

  7. Gonze, X.: Perturbation expansion of variational-principles at arbitrary order. Phys. Rev. A 52, 1086–1095 (1995)

    Article  ADS  Google Scholar 

  8. Gonze, X.: Adiabatic density-functional perturbation theory. Phys. Rev. A 52(5), 1096–1114 (1995)

    Article  ADS  Google Scholar 

  9. Gregor, T., Mauri, F., Car, R.: A comparison of methods for the calculation of NMR chemical shifts. J. Chem. Phys. 111, 1815–1822 (1999)

    Article  ADS  Google Scholar 

  10. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004)

    Article  Google Scholar 

  11. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27(15), 1787–1799 (2006)

    Article  Google Scholar 

  12. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. Keith, T.A., Bader, R.F.W.: Calculation of magnetic response properties using atoms in molecules. Chem. Phys. Lett. 194(1–2), 1–8 (1992)

    Google Scholar 

  14. Kohn, W., Sham, L.J.: Self-Consistent Equations Including Exchange and Correlation Effects. Defense Technical Information Center (1965)

    Google Scholar 

  15. Kutzelnigg, W.: Individual Gauges for localized orbitals. Isr. J. Chem. 19, 193 (1980)

    Article  Google Scholar 

  16. Kutzelnigg, W., Fleischer, U., Schindler, M.: The IGLO method. NMR Basic Principles Prog. 23, 165 (1990)

    Article  Google Scholar 

  17. Langreth, D.C., Dion, M., Rydberg, H., Schröder, E., Hyldgaard, P., Van der Lundqvist, B.I.: Waals density functional theory with applications. Int. J. Quant. Chem. 101(5), 599–610 (2005)

    Article  Google Scholar 

  18. Langreth, D.C., Lundqvist, B.I., Chakarova-Käck, S.D., Cooper, V.R., Dion, M., Hyldgaard, P., Thonhauser, T.: A density functional for sparse matter. J. Phys.: Condens. Matter 21(8), 084203 (2009)

    ADS  Google Scholar 

  19. Lee, K., Murray, É.D., Kong, L., Lundqvist, B.I., Langreth, D.C.: Higher-accuracy van der Waals density functional. Phys. Rev. B 82(8), 081101 (2010)

    Article  ADS  Google Scholar 

  20. Limbach, H.-H., Tolstoy, P.M., Perez-Hernandez, N., Guo, J., Shenderovich, I.G., Denisov, G.S.: OHO hydrogen bond geometries and NMR chemical shifts: from equilibrium structures to geometric H/D isotope effects, with applications for water, protonated water, and compressed ice. Isr. J. Chem. 49(2), 199–216 (2009)

    Article  Google Scholar 

  21. Lin, I.-C., Coutinho-Neto, M.M.D., Felsenheimer, C., von Lilienfeld, O.A., Tavernelli, I., Röthlisberger, U.: Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: elements H, C, N, O, He, Ne, Ar, and Kr. Phys. Rev. B 75(20), 205131 (2007)

    Article  ADS  Google Scholar 

  22. Lundqvist, B.I., Andersson, Y., Shao, H., Chan, S., Langreth, D.C.: Density functional theory including van der Waals forces. Int. J. Quant. Chem. 56(4), 247–255 (1995)

    Article  Google Scholar 

  23. Mahan, G.D.: Modified Sternheimer equation for polarizability. Phys. Rev. A 22(5), 1780–1785 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. Mahan, G.D.: van der Waals coefficient between closed shell ions. J. Chem. Phys. 76(1), 493–497 (1982)

    Article  ADS  Google Scholar 

  25. Mauri, F., Louie, S.: Magnetic susceptibility of insulators from first principles. Phys. Rev. Lett. 76, 4246–4249 (1996)

    Article  ADS  Google Scholar 

  26. Mauri, F., Pfrommer, B., Louie, S.: Ab initio theory of NMR chemical shifts in solids and liquids. Phys. Rev. Lett. 77, 5300–5303 (1996)

    Article  ADS  Google Scholar 

  27. Nguyen, H.-V., de Gironcoli, S.: Van der Waals coefficients of atoms and molecules from a simple approximationfor the polarizability. Phys. Rev. B 79, 115105 (2009)

    Article  ADS  Google Scholar 

  28. Ohno, K., Mauri, F., Louie, S.: Magnetic susceptibility of semiconductors by an all-electron first-principles approach. Phys. Rev. B 56, 1009 (1997)

    Article  ADS  Google Scholar 

  29. Pickard, C.J., Mauri, F.: All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001)

    Article  ADS  Google Scholar 

  30. Putrino, A., Sebastiani, D., Parrinello, M.: Generalized variational density functional perturbation theory. J. Chem. Phys. 113(17), 7102–7109 (2000)

    Article  ADS  Google Scholar 

  31. Rydberg, H., Dion, M., Jacobson, N., Schröder, E., Hyldgaard, P., Simak, S.I., Van der Langreth, D.C.: Waals density functional for layered structures. Phys. Rev. Lett. 91, 126402 (2003)

    Article  ADS  Google Scholar 

  32. Sebastiani, D., Parrinello, M.: A new ab-initio approach for NMR chemical shifts in periodic systems. J. Phys. Chem. 105, 1951–1958 (2001)

    Article  Google Scholar 

  33. Sebastiani, D.: Ab-initio calculation of nuclear magnetic resonance parameters in condensed phases. Mod. Phys. Lett. B 17, 1301–1319 (2003)

    Article  ADS  Google Scholar 

  34. Sebastiani, D., Goward, G.R., Schnell, I., Parrinello, M.: NMR chemical shifts in periodic systems from first principles. Comp. Phys. Commun. 147, 707 (2002)

    Article  ADS  MATH  Google Scholar 

  35. von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Sebastiani, D.: Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett. 93(15), 153004 (2004)

    Article  ADS  Google Scholar 

  36. Vydrov, O.A., Van Voorhis, T.: Nonlocal van der Waals density functional made simple. Phys. Rev. Lett. 103, 063004 (2009)

    Article  ADS  Google Scholar 

  37. Vydrov, O.A., Van Voorhis, T.: Benchmark assessment of the accuracy of several van der Waals density functionals. J. Chem. Theor. Comput. 8(6), 1929–1934 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sebastiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Watermann, T., Scherrer, A., Sebastiani, D. (2014). Linear Response Methods in Quantum Chemistry. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_5

Download citation

Publish with us

Policies and ethics