Skip to main content

Spurious Modes in Dirac Calculations and How to Avoid Them

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

In this paper we consider the problem of the occurrence of spurious modes when computing the eigenvalues of Dirac operators, with the motivation to describe relativistic electrons in an atom or a molecule. We present recent mathematical results which we illustrate by simple numerical experiments. We also discuss open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our examples we will have \(\mathfrak {H}=L^2(\Omega )\), the space of square-integrable functions on a domain \(\Omega \) in the \(N\)-dimensional space \({\mathbb R }^N\). We will encounter two main cases: that of the whole physical space \(\Omega ={\mathbb R }^3\) and that of the half line \(\Omega =(0,\infty )\) useful to deal with radial functions.

  2. 2.

    Take for instance \(\psi _n(\mathbf {r})=\exp (i\mathbf {p}\cdot \mathbf {r}/\hbar )n^{-N/2}\chi (\mathbf {r}/n)\) for some smooth \(\chi \) with \(\int _{{\mathbb R }^N}|\chi (\mathbf {r})|^2\mathrm{d}^Nr=1\) and a momentum \(\mathbf {p}\) such that \(p^2=2m\lambda \).

  3. 3.

    Sometimes the basis is rather taken to be \(\sigma _k\partial _k\varphi _n\), which multiplies the number of lower spinors by 3.

  4. 4.

    Actually, in [20], the function is taken of the form \(\varphi _n=\left( f(nr^2)+g(\delta n r^2)\right) {1\atopwithdelims ()0}\) where \(f\) and \(g\) are chosen with disjoint support, which simplifies some calculations.

References

  1. Aceto, L., Ghelardoni, P., Marletta, M.: Numerical computation of eigenvalues in spectral gaps of Sturm-Liouville operators. J. Comput. Appl. Math. 189, 453–470 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69, 121–140 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bossavit, A.: Solving Maxwell equations in a closed cavity, and the question of ‘spurious modes’. IEEE Trans. Magn. 26, 702–705 (1990)

    Article  ADS  Google Scholar 

  4. Boulton, L., Boussaid, N.: Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials. LMS J. Comput. Math. 13, 10–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boulton, L., Boussaid, N., Lewin, M.: Generalised Weyl theorems and spectral pollution in the Galerkin method. J. Spectra. Theor. 2, 329–354 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boulton, L., Levitin, M.: On approximation of the eigenvalues of perturbed periodic Schrödinger operators. J. Phys. A 40, 9319–9329 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bunting, C.F., Davis, W.A.: A functional for dynamic finite-element solutions in electromagnetics. IEEE Trans. Antennas Propag. 47, 149–156 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cancès, E., Ehrlacher, V., Maday, Y.: Periodic Schrödinger operators with local defects and spectral pollution. SIAM J. Numer. Anal. 50, 3016–3035 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Csendes, Z.J., Silvester, P.: Numerical solution of dielectric loaded waveguides: I-finite-element analysis. IEEE Trans. Microw. Theor. Tech. 18, 1124–1131 (1970)

    Article  ADS  Google Scholar 

  10. Davies, E.B.: Spectral enclosures and complex resonances for general self-adjoint operators. LMS J. Comput. Math. 1, 42–74 (1998). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dolbeault, J., Esteban, M.J., Séré, É.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174, 208–226 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Drake, G.W.F., Goldman, S.P.: Application of discrete-basis-set methods to the dirac equation. Phys. Rev. A 23, 2093–2098 (1981)

    Article  ADS  Google Scholar 

  13. Dyall, K.G., Fægri Jr, K.: Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set. Chem. Phys. Lett. 174, 25–32 (1990)

    Article  ADS  Google Scholar 

  14. Esteban, M.J., Lewin, M., Séré, É.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. (N.S.). 45, 535–593 (2008)

    Google Scholar 

  15. Fernandes, P., Raffetto, M.: Counterexamples to the currently accepted explanation for spurious modes and necessary and sufficient conditions to avoid them. IEEE Trans. Magn. 38, 653–656 (2002)

    Article  ADS  Google Scholar 

  16. Grant, I.P.: Conditions for convergence of variational solutions of Dirac’s equation in a finite basis. Phys. Rev. A 25, 1230–1232 (1982)

    Article  ADS  Google Scholar 

  17. Hylleraas, E.A., Undheim, B.: Numerische berechnung der 2S-terme von ortho-und par-helium. Z. Phys. 65, 759–772 (1930)

    Article  MATH  ADS  Google Scholar 

  18. Klahn, B., Bingel, W.A.: The convergence of the Rayleigh-Ritz method in quantum chemistry II. Investigation of the convergence for special systems of slater, gauss and two-electron functions. Theoret. Chim. Acta 44, 27–43 (1977)

    Google Scholar 

  19. Kutzelnigg, W.: Basis set expansion of the Dirac operator without variational collapse. Int. J. Quant. Chem. 25, 107–129 (1984)

    Article  Google Scholar 

  20. Lewin, M., Séré, É.: Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators). Proc. London Math. Soc. 100, 864–900 (2010)

    Article  MATH  Google Scholar 

  21. MacDonald, J.K.L.: Successive approximations by the Rayleigh-Ritz variation method. Phys. Rev. 43, 830–833 (1933)

    Article  ADS  Google Scholar 

  22. nan Jiang, B., Wu, J., Povinelli, L.: The origin of spurious solutions in computational electromagnetics. J. Comput. Phys. 125, 104–123 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Pestka, G.: Spurious roots in the algebraic Dirac equation. Phys. Scr. 68, 254–258 (2003)

    Article  MATH  ADS  Google Scholar 

  24. Rappaz, J., Sanchez Hubert, J., Sanchez Palencia, E., Vassiliev, D.: On spectral pollution in the finite element approximation of thin elastic “membrane” shells. Numer. Math. 75, 473–500 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schroeder, W., Wolff, I.: The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems. IEEE Trans. Microw. Theor. Tech. 42, 644–653 (1994)

    Article  ADS  Google Scholar 

  26. Schwerdtfeger, P.(ed.): Relativistic electronic structure theory. Part 1. Fundamentals of Theoretical and Computational Chemistry, vol. 11. Elsevier (2002) (elsevier ed.)

    Google Scholar 

  27. Shabaev, V., Tupitsyn, I.I., Yerokhin, V.A., Plunien, G., Soff, G.: Dual kinetic balance approach to basis-set expansions for the Dirac equation. Phys. Rev. Lett. 93, 130405 (2004)

    Article  ADS  Google Scholar 

  28. Simon, B.: The theory of schrodinger operators: what’s it all about? Eng. Sci. 48, 20–25 (1985)

    Google Scholar 

  29. Stanton, R.E., Havriliak, S.: Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys. 81, 1910–1918 (1984)

    Article  ADS  Google Scholar 

  30. Stolz, G., Weidmann, J.: Approximation of isolated eigenvalues of ordinary differential operators. J. Reine Angew. Math. 445, 31–44 (1993)

    MATH  MathSciNet  Google Scholar 

  31. Stolz, G., Weidmann, J.: pproximation of isolated eigenvalues of general singular ordinary differential operators. Results Math. 28, 345–358 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sutcliffe, B.: What mathematicians know about the solutions of schrodinger coulomb hamiltonian. Should chemists care? J. Math. Chem. 44, 988–1008 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics, Springer, Berlin (1992)

    Book  Google Scholar 

Download references

Acknowledgments

M. L. would like to thank Lyonell Boulton and Nabile Boussaid for stimulating discussions, in particular concerning the numerical experiments of this article. M. L. has received financial support from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement MNIQS 258023). M. L. and É. S. acknowledge financial support from the French Ministry of Research (ANR-10-BLAN-0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewin, M., Séré, É. (2014). Spurious Modes in Dirac Calculations and How to Avoid Them. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_2

Download citation

Publish with us

Policies and ethics