Skip to main content

The GW Approximation for the Electronic Self-Energy

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Many-body perturbation theory is a well-established ab initio electronic-structure method based on Green functions. Although computationally more demanding than density functional theory, it has the distinct advantage that the exact expressions for all relevant observables, including the ground-state total energy, in terms of the Green function are known explicitly. The most important application, however, lies in the calculation of excited states, whose energies correspond directly to the poles of the Green function in the complex frequency plane. The accuracy of results obtained within this framework is only limited by the choice of the exchange-correlation self-energy, which must still be approximated in actual implementations. In this respect, the \(GW\) approximation has proved highly successful for systems governed by the Coulomb interaction. It yields band structures of solids, including the band gaps of semiconductors, as well as atomic and molecular ionization energies in very good quantitative agreement with experimental photoemission data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aryasetiawan, F., Gunnarsson, O.: Phys. Rev. Lett. 74, 3221 (1995)

    Google Scholar 

  2. Aryasetiawan, F., Hedin, L., Karlsson, K.: Phys. Rev. Lett. 77, 2268 (1996)

    Article  ADS  Google Scholar 

  3. Aulbur, W.G., Jönsson, L., Wilkins, J.W.: In: Ehrenreich, H., Spaepen, F. (eds.) Solid State Physics, vol. 54, p. 1. Academic, New York (2000)

    Google Scholar 

  4. Dahlen, N.E., van Leeuwen, R., von Barth, U.: Phys. Rev. A 73, 012511 (2006)

    Article  ADS  Google Scholar 

  5. Del Sole, R., Reining, L., Godby, R.W.: Phys. Rev. B 49, 8024 (1994)

    Article  ADS  Google Scholar 

  6. Dyson, F.J.: Phys. Rev. 75, 1736 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Feste, S.F., Schäpers, T., Buca, D., Zhao, Q.T., Knoch, J., Bouhassoune, M., Schindlmayr, A., Mantl, S.: Appl. Phys. Lett. 95, 182101 (2009)

    Article  ADS  Google Scholar 

  8. Freysoldt, C., Eggert, P., Rinke, P., Schindlmayr, A., Scheffler, M.: Phys. Rev. B 77, 235428 (2008)

    Article  ADS  Google Scholar 

  9. Friedrich, C., Blügel, S., Schindlmayr, A.: Phys. Rev. B 81, 125102 (2010)

    Article  ADS  Google Scholar 

  10. Galitskii, V.M., Migdal, A.B., Eksp, Zh: Teor. Fiz. 34, 139 (1958)

    Google Scholar 

  11. Godby, R.W., Schlüter, M., Sham, L.J.: Phys. Rev. Lett. 56, 2415 (1986)

    Article  ADS  Google Scholar 

  12. Godby, R.W., Schlüter, M., Sham, L.J.: Phys. Rev. B 37, 10159 (1988)

    Article  ADS  Google Scholar 

  13. Hedin, L.: Phys. Rev. B 139, A796 (1965)

    Article  ADS  Google Scholar 

  14. Hedin, L., Lundqvist, S.: In: Ehrenreich, H., Seitz, F., Turnbull, D. (eds.) Solid State Physics, vol. 23, p. 1. Academic, New York (1969)

    Google Scholar 

  15. Hedström, M., Schindlmayr, A., Schwarz, G., Scheffler, M.: Phys. Rev. Lett. 97, 226401 (2006)

    Article  ADS  Google Scholar 

  16. Holm, B., von Barth, U.: Phys. Rev. B 57, 2108 (1998)

    Article  ADS  Google Scholar 

  17. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hybertsen, M.S., Louie, S.G.: Phys. Rev. Lett. 55, 1418 (1985)

    Article  ADS  Google Scholar 

  19. Hybertsen, M.S., Louie, S.G.: Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  20. Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kotani, T.: J. Phys.: Condens. Matter 10, 9241 (1998)

    ADS  Google Scholar 

  22. Kotani, T., van Schilfgaarde, M.: Solid State Commun. 121, 461 (2002)

    Article  ADS  Google Scholar 

  23. Ku, W., Eguiluz, A.G.: Phys. Rev. Lett. 89, 126401 (2002)

    Article  ADS  Google Scholar 

  24. Mahan, G.D.: Many-Particle Physics. Plenum, New York (1990)

    Book  Google Scholar 

  25. Mahan, G.D., Sernelius, B.E.: Phys. Rev. Lett. 62, 2718 (1989)

    Article  ADS  Google Scholar 

  26. Møller, C., Plesset, M. S.: Phys. Rev. 46, 618 (1934)

    Google Scholar 

  27. Northrup, J.E., Hybertsen, M.S., Louie, S.G.: Phys. Rev. Lett. 59, 819 (1987)

    Article  ADS  Google Scholar 

  28. Olevano, V., Titov, A., Ladisa, M., Hämäläinen, K., Huotari, S., Holzmann, M.: Phys. Rev. B 86, 195123 (2012)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., Levy, M.: Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  30. Quinn, J.J., Ferrell, R.A.: Phys. Rev. 112, 812 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Rostgaard, C., Jacobsen, K.W., Thygesen, K.S.: Phys. Rev. B 81, 085103 (2010)

    Article  ADS  Google Scholar 

  32. Schindlmayr, A., García-González, P., Godby, R.W.: Phys. Rev. B 64, 235106 (2001)

    Article  ADS  Google Scholar 

  33. Schöne, W.-D., Eguiluz, A.G.: Phys. Rev. Lett. 81, 1662 (1998)

    Article  ADS  Google Scholar 

  34. Shishkin, M., Kresse, G.: Phys. Rev. B 74, 035101 (2006)

    Article  ADS  Google Scholar 

  35. Springer, M., Aryasetiawan, F., Karlsson, K.: Phys. Rev. Lett. 80, 2389 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Schindlmayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schindlmayr, A. (2014). The GW Approximation for the Electronic Self-Energy. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_19

Download citation

Publish with us

Policies and ethics