Skip to main content

Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

This is an introductory text reviewing Lieb-Robinson bounds for open and closed quantum many-body systems. We introduce the Heisenberg picture for time-dependent local Liouvillians and state a Lieb-Robinson bound that gives rise to a maximum speed of propagation of correlations in many body systems of locally interacting spins and fermions. Finally, we discuss a number of important consequences concerning the simulation of time evolution and properties of ground states and stationary states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we will later mostly work in the Heisenberg picture it is convenient to denote the Liouvillian in the Schrödinger picture by \(\fancyscript{L}^\dagger \) rather than \(\fancyscript{L}\).

  2. 2.

    In Ref. [6] the bound is given for an arbitrary metric on the vertex set and the Liouvillians are allowed to have interaction range \(a\) in that metric. Our interaction graph distance \(d\) is induced by a metric on \(V\) for which \(a=1\).

  3. 3.

    The spectral gap of a Hamiltonian \(\varDelta E\) is the difference between the ground state energy and the energy of the first exited state.

References

  1. Affleck, I., Lieb, E.H.: Lett. Math. Phys. 12, 57 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Arad, I., Landau, Z., Vazirani, U.: Phys. Rev. B 85, 195145 (2012)

    Article  ADS  Google Scholar 

  3. Ates, C., Olmos, B., Li, W., Lesanovsky, I.: Phys. Rev. Lett. 109, 233003 (2012)

    Article  ADS  Google Scholar 

  4. Bardyn, C.-E., Baranov, M.A., Rico, E., Imamoglu, A., Zoller, P., Diehl, S.: Phys. Rev. Lett. 109, 130402 (2012)

    Article  ADS  Google Scholar 

  5. Barreiro, J.T., Müller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: Nature 470, 486 (2011)

    Article  ADS  Google Scholar 

  6. Barthel, T., Kliesch, M.: Phys. Rev. Lett. 105, 010502 (2010)

    Article  ADS  Google Scholar 

  7. Brandao, F.G.S.L., Horodecki, M.: Nat. Phys. 9, 721 (2013).

    Google Scholar 

  8. Bravyi, S., Hastings, M.B., Verstraete, F.: Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  9. Bravyi, S., Hastings, M., Michalakis, S.: J. Math. Phys. 51, 093512 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Burrell, C.K., Eisert, J., Osborne, T.J.: Phys. Rev. A 80, 052319 (2009)

    Article  ADS  Google Scholar 

  11. Cheneau, M., Barmettler, P., Poletti, D., Endres, M., Schauß, P., Fukuhara, T., Gross, C., Bloch, I., Kollath, C., Kuhr, S.: Nature 481, 484 (2012)

    Article  ADS  Google Scholar 

  12. Cramer, M., Dawson, C.M., Eisert, J., Osborne, T.J.: Phys. Rev. Lett. 100, 030602 (2008)

    Article  ADS  Google Scholar 

  13. Cubitt, T.S., Lucia, A., Michalakis, S., Perez-Garcia, D.: arXiv:1303.4744.

  14. Descamps, B., Verstraete, F.: J. Math. Phys. 54, 092202 (2013)

    Google Scholar 

  15. Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Nat. Phys. 4, 878 (2008)

    Article  Google Scholar 

  16. Diehl, S., Yi, W., Daley, A.J., Zoller, P.: Phys. Rev. Lett. 105, 227001 (2010)

    Article  ADS  Google Scholar 

  17. Eisert, J., Prosen, T.: arXiv:1012.5013.

  18. Eisert, J., Osborne, T.J.: Phys. Rev. Lett. 97, 150404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Eisert, J., Gross, D.: Phys. Rev. Lett. 102, 240501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Eisert, J., Cramer, M., Plenio, M.B.: Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Emary, C., Pöltl, C., Carmele, A., Kabuss, J., Knorr, A., Brandes, T.: Phys. Rev. B 85, 165417 (2012)

    Article  ADS  Google Scholar 

  22. Fannes, M., Nachtergaele, B., Werner, R.F.: Commun. Math. Phys. 144, 443 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Glaetzle, A.W., Nath, R., Zhao, B., Pupillo, G., Zoller, P.: Phys. Rev. A 86, 043403 (2012)

    Article  ADS  Google Scholar 

  24. Haegeman, J., Michalakis, S., Nachtergaele, B., Osborne, T.J., Schuch, N., Verstraete, F.: Phys. Rev. Lett. 111, 080401 (2013)

    Google Scholar 

  25. Haegeman, J., Cirac, J.I., Osborne, T.J., Pizorn, I., Verschelde, H., Verstraete, F.: Phys. Rev. Lett. 107, 070601 (2011)

    Article  ADS  Google Scholar 

  26. Hastings, M.B.: JSTAT P08024 (2007)

    Google Scholar 

  27. Hastings, M.B.: Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  28. Hastings, M.B.: Phys. Rev. Lett. 93, 126402 (2004)

    Article  ADS  Google Scholar 

  29. Hastings, M.B.: Europhys. Lett. 70, 824 (2005)

    Article  ADS  Google Scholar 

  30. Hastings, M.B., Wen, X.-G.: Phys. Rev. B 72, 045141 (2005)

    Article  ADS  Google Scholar 

  31. Hastings, M.B., Koma, T.: Commun. Math. Phys. 265, 781 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Jordan, P., Wigner, E.: Z. Phys. 47, 631 (1928)

    Article  ADS  MATH  Google Scholar 

  33. Kastoryano, M., Eisert, J.: J. Math. Phys. 54, 102201 (2013)

    Google Scholar 

  34. Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M., Eisert, J.: Phys. Rev. Lett. 107, 120501 (2011)

    Article  ADS  Google Scholar 

  35. Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Phys. Rev. Lett. 107, 080503 (2011)

    Article  ADS  Google Scholar 

  36. Landau, Z., Vazirani, U., Vidick, T.: arXiv:1307.5143

  37. Lieb, E.H., Schultz, T.D., Mattis, D.C.: Ann. Phys. 16, 407 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Lieb, E.H., Robinson, D.W.: Commun. Math. Phys. 28, 251 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lindblad, G.: Comm. Math. Phys. 48, 119 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Loss, D., Sukhorukov, E.V.: Phys. Rev. Lett. 84, 1035 (2000)

    Article  ADS  Google Scholar 

  41. Michalakis, S., Pytel, J.: Commun. Math. Phys. 322, 277 (2013)

    Google Scholar 

  42. Michalakis, S.: arXiv:1206.6900

  43. Nachtergaele, B., Sims, R.: in New Trends. In: Sidoravicius, V. (ed.) Mathematical Physics. Selected contributions of the XVth International Congress on Mathematical Physics, pp. 591–614. Springer, Heidelberg (2009).

    Google Scholar 

  44. Nachtergaele, B., Ogata, Y., Sims, R.: J. Stat. Phys. 124 (2006)

    Google Scholar 

  45. Nachtergaele, B., Sims, R.: IAMP News Bull. 22 (2010)

    Google Scholar 

  46. Nachtergaele, B., Sims, R.: Commun. Math. Phys. 265, 119 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Nachtergaele, B., Raz, H., Schlein, B., Sims, R.: Commun. Math. Phys. 286, 1073 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Nachtergaele, B., Vershynina, A., Zagrebnov, V.A.: Contemp. Math. 552, 161 (2011)

    Article  MathSciNet  Google Scholar 

  49. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  50. Osborne, T.J.: Phys. Rev. Lett. 97, 157202 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  51. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum Inf. Comput. 7, 401 (2007)

    MATH  MathSciNet  Google Scholar 

  52. Pichler, H., Daley, A.J., Zoller, P.: Phys. Rev. A 82, 063605 (2010)

    Article  ADS  Google Scholar 

  53. Pineda, C., Barthel, T., Eisert, J.: Phys. Rev. A 81, 050303(R) (2010)

    Article  ADS  Google Scholar 

  54. Plenio, M.B., Eisert, J., Dreissig, J., Cramer, M.: Phys. Rev. Lett. 94, 060503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  55. Poulin, D.: Phys. Rev. Lett. 104, 190401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  56. Prémont-Schwarz, I., Hamma, A., Klich, I., Markopoulou-Kalamara, F.: Phys. Rev. A 81, 040102(R) (2010)

    Article  ADS  Google Scholar 

  57. Schindler, P., Müller, M., Nigg, D., Barreiro, J.T., Martinez, E.A., Hennrich, M., Monz, T., Diehl, S., Zoller, P., Blatt, R.: Nat. Phys. 9, 361 (2013)

    Google Scholar 

  58. Schollwöck, U.: Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  59. Schollwöck, U.: Ann. Phys. 326, 96 (2011)

    Article  ADS  MATH  Google Scholar 

  60. Schuch, N., Wolf, M.M., Verstraete, F., Cirac, J.I.: Phys. Rev. Lett. 100, 030504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  61. Schuch, N., Wolf, M.M., Vollbrecht, K.G.H., Cirac, J.I.: New J. Phys. 10, 033032 (2008)

    Article  ADS  Google Scholar 

  62. Schuch, N., Harrison, S.K., Osborne, T.J., Eisert, J.: Phys. Rev. A 84, 032309 (2011)

    Article  ADS  Google Scholar 

  63. Schuetz, M.J.A., Kessler, E.M., Cirac, J.I., Giedke, G.: Phys. Rev. B 86, 085322 (2012)

    Article  ADS  Google Scholar 

  64. Trotter, H.F.: Proc. Am. Math. Soc 10, 545 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  65. Van Acoleyen, K., Marien, M., Verstraete, F.: Phys. Rev. Lett. 111, 170501 (2013)

    Google Scholar 

  66. Verstraete, F., Garcia-Ripoll, J.J., Cirac, J.I.: Phys. Rev. Lett. 93, 207204 (2004)

    Article  ADS  Google Scholar 

  67. Verstraete, F., Cirac, J.I.: J. Stat. Mech. 09, P09012 (2005)

    MathSciNet  Google Scholar 

  68. Verstraete, F., Cirac, J.I.: Phys. Rev. B 73, 094423 (2006)

    Article  ADS  Google Scholar 

  69. Verstraete, F., Wolf, M.M., Cirac, J.I.: Nat. Phys. 5, 633 (2009)

    Article  Google Scholar 

  70. Wolf, M.M., Cirac, J.I.: Commun. Math. Phys. 279, 147 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Žnidarič, M., Žunkovič, B., Prosen, T.: Phys. Rev. E 84, 051115 (2011)

    Article  ADS  Google Scholar 

  72. Zwolak, M., Vidal, G.: Phys. Rev. Lett. 93, 207205 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Earl T. Campbell, Mathis Friesdorf and Albert H. Werner for comments. We acknowledge support from the EU (Q-Essence, Raquel), the BMBF (QuOReP), the ERC (Taq), and the Studienstiftung des Deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kliesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kliesch, M., Gogolin, C., Eisert, J. (2014). Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_17

Download citation

Publish with us

Policies and ethics