Skip to main content

Computational Techniques for Density Functional Based Molecular Dynamics Calculations in Plane-Wave and Localized Basis Sets

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

Modern theoretical methods, aided by the emergence of increasingly powerful high-speed computing architectures, have advanced to a level such that the microscopic details of chemical processes in condensed phases can now be treated on a relatively routine basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.cp2k.org

  2. Bachelet, G., Hamann, D., Schluter, M.: Pseudopotentials that work. Phys. Rev. B 26, 4199 (1982)

    Google Scholar 

  3. Becke, A.: Density-functional exchange-energy approximation with correct assymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  4. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: Proceedings of the 2009 ACM/IEEE Conference on Supercomputing (2009)

    Google Scholar 

  5. Berghold, G., Mundy, C.J., Romero, A.H., Parrinello, M.: General and efficient algorithms for obtaining maximally localized wannier functions. Phys. Rev. B 61, 10040 (2000)

    Google Scholar 

  6. Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A., Martyna, G.J.: Fine-grained parallelization of the Car-Parrinello ab initio molecular dynamics method on the IBM Blue Gene/L supercomputer. IBM J. Res. Devel. 52, 159–175 (2008)

    Article  Google Scholar 

  7. Boys, S.F.: Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys. 32, 296–299 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  8. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985)

    Google Scholar 

  9. Carloni, P., Rothlisberger, U., Parrinello, M.: The role and perspective of ab initio molecular dynamics in the study of biological systems. Acc. Chem. Res. 35, 455–464 (2002)

    Article  Google Scholar 

  10. Colbert, D.T., Miller, W.H.: A novel discrete variable representation for quantum-mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96, 1982 (1992)

    Google Scholar 

  11. Cramer, C., Board, J.: The development and integration of a distributed 3D FFT for a cluster of workstations. 4th Annual Linux Showcase and Conference, pp. 121–128. (2000)

    Google Scholar 

  12. Essmann, U., Perrera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  ADS  Google Scholar 

  13. Foster, J.M., Boys, S.F.: Canonical configurational interaction procedure. Rev. Mod. Phys. 32, 300 (1960)

    Google Scholar 

  14. Guerin, S., Jauslin, H.R.: Grid methods and Hilbert space basis for simulations of quantum dynamics. Comput. Phys. Comm. 121–122, 469 (1999)

    Google Scholar 

  15. Guidon, M., Schiffmann, F., Hutter, J., VandeVondele, J.: Ab initio molecular dynamics using hybrid density functionals. J. Chem. Phys. 128, 214104 (2008)

    Google Scholar 

  16. Iftimie, R., Thomas, J.W., Tuckerman, M.E.: On-the-fly localization of electronic orbitals in Car-Parrinello molecular dynamics. J. Chem. Phys. 120, 2169–2181 (2004)

    Article  ADS  Google Scholar 

  17. Kalé, L.V.: The virtualization model of parallel programming: Runtime optimizations and the state of art. In: LACSI 2002. Albuquerque (2002)

    Google Scholar 

  18. Kale, L.V., Krishnan, S.: Charm++: parallel programming with message-driven objects. In: Wilson, G.V., Lu P. (eds.) Parallel Programming using C++, pp. 175–213. MIT Press, Cambridge (1996).

    Google Scholar 

  19. Karki, B.B., Stixrude, L., Wentzcovitch, R.M.: High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys. 39, 507–534 (2001)

    Article  ADS  Google Scholar 

  20. Kleinman, L., Bylander, D.M.: Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982)

    Google Scholar 

  21. Lee, H.S., Tuckerman, M.E.: Ab initio molecular dynamics with discrete variable representation basis sets: application to liquid water. J. Phys. Chem. A 110, 5549 (2006)

    Google Scholar 

  22. Lee, H.S., Tuckerman, M.E.: Structure of liquid water at ambient temperature from ab initio molecular dynamics performed in the complete basis set limit. J. Chem. Phys 125, 154–507 (2006)

    Google Scholar 

  23. Lee, H.S., Tuckerman, M.E.: Dynamical properties of liquid water at ambient temperature from ab initio molecular dynamics performed in the complete basis set limit. J. Chem. Phys 126, 164–501 (2007)

    Google Scholar 

  24. Lee, C., Yang, W., Parr, R.C.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  25. Lee, H.S., Tuckerman, M.E., Martyna, G.J.: Efficient evaluation of nonlocal pseudopotentials via euler exponential spline interpolation. ChemPhysChem. 6, 1827–1835 (2005)

    Article  Google Scholar 

  26. Light, J.C., Carrington, T.: Discrete-variable representations and their utilization. Adv. Chem. Phys. 114, 263 (2000)

    Google Scholar 

  27. Light, J.C., Hamilton, I.P., Lill, J.V.: Generalized discrete variable approximation in quantum-mechanics. J. Chem. Phys. 82, 1400 (1985)

    Google Scholar 

  28. Lippert, G., Hutter, J., Parrinello, M.: A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–487 (1997)

    Google Scholar 

  29. Liu, X.Y., Andersson, D.A., Uberuaga, B.P.: First-principles DFT modeling of nuclear fuel materials. J. Mat. Sci. 47, 7367–7384 (2012)

    Article  ADS  Google Scholar 

  30. Liu, Y., Yarne, D.A., Tuckerman, M.E.: Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis sets. Phys. Rev. B 68, 110–125 (2003)

    Google Scholar 

  31. Ma, Z., Tuckerman, M.E.: Constant pressure ab initio molecular dynamics with discrete variable representation basis sets. J. Chem. Phys 133, 110–184 (2010)

    Google Scholar 

  32. Martyna, G.J., Tuckerman, M.E.: A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys. 110, 2810–2821 (1999)

    Article  ADS  Google Scholar 

  33. Marx, D.: Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7, 1848–1870 (2000)

    Article  Google Scholar 

  34. Marx, D., Chandra, A., Tuckerman, M.E.: Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem. Rev. 110, 2174–2216 (2010)

    Article  Google Scholar 

  35. Marx, D., Hutter, J.: Modern methods and algorithms of quantum chemistry, chap. Ab Initio molecular dynamics: theory and implementations, pp. 301–449. NIC, FZ Juelich (2000)

    Google Scholar 

  36. Marx, D., Hutter, J.: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  37. Marzari, N., Vanderbilt, D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12–847 (1997)

    Article  Google Scholar 

  38. Minary, P., Morrone, J.A., Yarne, D.A., Tuckerman, M.E., Martyna, G.J.: Long range interactions on wires: a reciprocal space based formalism. J. Chem. Phys 121, 11949–11956 (2004)

    Article  ADS  Google Scholar 

  39. Minary, P., Tuckerman, M.E., Pihakari, K.A., Martyna, G.J.: A new reciprocal space based treatment of long range interactions on surfaces. J. Chem. Phys. 116, 5351–5362 (2002)

    Article  ADS  Google Scholar 

  40. Muckerman, J.T.: Some useful discrete variable representations for problems in time-dependent and time-independent quantum-mechanics. Chem. Phys. Lett. 173, 200 (1990)

    Google Scholar 

  41. Nulic, A., Gilbert, J.: On representation and multiplication of hypersparse matrices. In: IPDPS pp. 1–11. (2008).

    Google Scholar 

  42. NVIDIA: CUDA zone resource for c developers of applications that solve computing problems. http://www.nvidia.com/object/cuda_home_new.html (2010)

  43. Parrinello, M.: From silicon to RNA: the coming of age of ab initio molecular dynamics. Solid State Ionics 102, 107–120 (1997)

    Google Scholar 

  44. Sharma, M., Car, R.: Ab initio molecular dynamics with maximally localized Wannier functions. Int. J. Quant. Chem. 95, 821 (2003)

    Google Scholar 

  45. Thomas, J.W., Iftimie, R., Tuckerman, M.E.: Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics. Phys. Rev. B 69, 105–125 (2004)

    Google Scholar 

  46. Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)

    Google Scholar 

  47. Tuckerman, M.: Ab initio moelcular dynamics: basic concepts, current trends and novel applications. J. Phys. Condens. Matter 14, R1297–R1355 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  48. Tuckerman, M., Yarne, D., Samuelson, S., Hughes, A., Martyna, G.: Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comp. Phys. Comm. 128, 333 (2000)

    Google Scholar 

  49. Vadali, R.V., Kumar, S., Kale, L.V., Tuckerman, M.E., Martyna, G.J.: Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers. J. Comp. Chem. 25, 2006–2022 (2005)

    Article  Google Scholar 

  50. VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., Hutter, J.: Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Comm. 167, 103–128 (2005)

    Article  ADS  Google Scholar 

  51. Wannier, G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191 (1937)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Tuckerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tzanov, A.T., Tuckerman, M.E. (2014). Computational Techniques for Density Functional Based Molecular Dynamics Calculations in Plane-Wave and Localized Basis Sets. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_15

Download citation

Publish with us

Policies and ethics