Skip to main content

Relativistic Quantum Theory of Many-Electron Systems

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

In this chapter, we review the development of the relativistic semi-classical theory of many-electron systems, in which the quantized matter field is described by the Dirac equation, while electromagnetic interactions are treated classically in the framework of Maxwell’s electrodynamics. The long-standing conceptual issues like prolapse and the Brown–Ravenhall desease are revisited, reference to the recently developed exact-decoupling approaches for spinor representations are provided, and selected results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, M., Gopakmar, G., Nakajima, T., Hirao, K.: Relativistic multireference perturbation theory: complete active-space second-order perturbation theory (CASPT2) with the four-component dirac hamiltonian. In: Leszczynski, J. (ed.) Challenges and Advances in Compu tational Chemistry and Physics, p. 157. Springer, Berlin (2008)

    Google Scholar 

  2. Aguilar, J., Combes, J.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Comm. Math. Phys. 22(22), 269 (1971)

    Google Scholar 

  3. Andersson, K., Roos, B.O.: Multiconfigurational second-order perturbation theory. In: Yarkony, D. (ed.) Modern Electronic Structure Theory Part II, p. 55. World Scientific, Singapore (1995)

    Google Scholar 

  4. Autschbach, J.: The accuracy of hyperfine integrals in relativistic NMR computations based on the zeroth-order regular approximation. Theor. Chem. Acc. 112(1), 52 (2004)

    Google Scholar 

  5. Autschbach, J.: Perspective: relativistic effects. J. Chem. Phys. 136, 150902 (2012)

    Article  ADS  Google Scholar 

  6. Autschbach, J., Peng, D., Reiher, M.: Two-component relativistic calculations of electric-field gradients using exact decoupling methods: spinorbit and picture-change effects. J. Chem. Theory Comput. 8, 4239 (2012)

    Google Scholar 

  7. Baerends, E.J., Schwarz, W.H.E., Schwerdtfeger, P., Snijders, J.G.: Relativistic atomic orbital contractions and expansions: magnitudes and explanations. J. Phys. B 23(19), 3225 (1990)

    Google Scholar 

  8. Balslev, E., Combes, J.M.: Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Comm. Math. Phys. 22(4), 280 (1971)

    Google Scholar 

  9. Barysz, M., Ishikawa, Y. (eds.): Relativistic Methods for Chemists, Challenges and Advances in Computational Chemistry and Physics, vol. 10. Springer Science\(+\)Business Media, Dordrecht (2010)

    Google Scholar 

  10. Barysz, M., Sadlej, A.J.: Two-component methods of relativistic quantum chemistry: from the DouglasKroll approximation to the exact two-component formalism. J. Mol. Struct.: THEOCHEM 573(1–3), 181 (2001)

    Google Scholar 

  11. Barysz, M., Sadlej, A.J.: Infinite-order two-component theory for relativistic quantum chemistry. J. Chem. Phys. 116(7), 2696 (2002)

    Google Scholar 

  12. Barysz, M., Sadlej, A.J., Snijders, J.G.: Nonsingular two/one-component relativistic Hamiltonians accurate through arbitrary high order in 2. Int. J. Quantum Chem. 65(3), 225 (1997)

    Google Scholar 

  13. Beloy, K., Derevianko, A.: Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure. Comput. Phys. Commun. 179(5), 310 (2008)

    Google Scholar 

  14. Belpassi, L., Storchi, L., Quiney, H.M., Tarantelli, F.: Recent advances and perspectives in four-component Dirac-Kohn–Sham calculations. Phys. Chem. Chem. Phys. 13, 12368 (2011)

    Google Scholar 

  15. Binkley, J.S., Pople, J.A.: Møller-Plesset theory for atomic ground state energies. Int. J. Quantum Chem. 9, 229 (1975)

    Article  Google Scholar 

  16. Boys, S.F.: Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond. A 200, 542 (1950)

    Google Scholar 

  17. Boys, S.F.: The integral formulae for the variational solution of the molecular many-electron wave equations in terms of Gaussian functions with direct electronic correlation. Proc. R. Soc. Lond. Ser. A 258(1294), 402 (1960)

    Google Scholar 

  18. Brown, G.E., Ravenhall, D.G.: On the interaction fo two electrons. Proc. R. Soc. Lond. A 208, 94 (1951)

    Article  MathSciNet  Google Scholar 

  19. Buenker, R.J., Peyerimhoff, S.D.: CI method for the study of general molecular potentials. Theoret. Chim. Acta (Berl.) 12, 183 (1968)

    Google Scholar 

  20. Buenker, R.J., Peyerimhoff, S.D.: Individualized configuration selection in CI calculations with subsequent energy extrapolation. Theoret. Chim. Acta (Berl.) 35, 33 (1974)

    Google Scholar 

  21. Bylicki, M., Pestka, G., Karwowski, J.: Relativistic Hylleraas configuration-interaction method projected into positive-energy space. Phys. Rev. A 77(4), 044501 (2008)

    Google Scholar 

  22. Chandrasekhar, S., Elbert, D., Herzberg, G.: Shift of the 1S1 state of Helium. Phys. Rev. 91(5), 1172 (1953)

    Google Scholar 

  23. Chandrasekhar, S., Herzberg, G.: Energies of the Ground States of He, Li+, and O6+. Phys. Rev. 98(4), 1050 (1955)

    Google Scholar 

  24. Chang, C., Pelissier, M., Durand, P.: Regular two-component Pauli-like effective Hamiltonians in Dirac theory. Phys. Scr. 34(5), 394 (1986)

    Google Scholar 

  25. Cizek, J.: On the correlation problem in atomic and molecular systems. Calculaion of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45, 4256 (1966)

    Article  ADS  Google Scholar 

  26. Darwin, C.G.: On the diffraction of the magnetic electron. Proc. R. Soc. London Ser. A 120(786), 631 (1928)

    Google Scholar 

  27. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  MATH  Google Scholar 

  28. Dirac, P.A.M.: The quantum theory of the electron (Part II). Proc. R. Soc. Lond. A1 118, 351 (1928)

    Google Scholar 

  29. Doolen, G.D.: A procedure for calculating resonance eigenvalues. J. Phys. B 8(4), 525 (1975)

    Google Scholar 

  30. Douglas, M., Kroll, N.M.: Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys. 82, 89 (1974)

    Google Scholar 

  31. Dyall, K., Grant, I., Wilson, S.: Matrix representation of operator products. J. Phys. B 493(17), 493 (1984)

    Google Scholar 

  32. Dyall, K.G.: Second-order Møller-Plesset perturbation theroy for molecular Dirac-Hartree–Fock wavefunctions. Theory for up to two open-shell electrons. Chem. Phys. Lett. 224, 186 (1994)

    Google Scholar 

  33. Dyall, K.G.: A question of balance: kinetic balance for electrons and positrons. Chem. Phys. 395, 35 (2012)

    Google Scholar 

  34. Dyall, K.G., Grant, I.P., Johnson, C.T., Parpia, F.A., Plummer, E.P.: GRASP: a general-purpose relativistic atomic structure program. Comp. Phys. Commun. 55, 425 (1989)

    Google Scholar 

  35. Eickerling, G., Reiher, M.: The shell structure of atoms. J. Chem. Theory Comput. 4, 286 (2008)

    Google Scholar 

  36. Eliav, E., Kaldor, U.: Four-component electronic structure methods. In: Barysz, M., Ishikawa, Y. (eds.) Relativistic Methods for Chemists, Chap. 7, p. 279. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  37. Eliav, E., Kaldor, U.: Relativistic four-component multireference coupled cluster methods: towards a covariant approach. In: Carsky, P., et al. (ed.) Recent Progress in Coupled Cluster Methods, pp. 113–144. Springer Science\(+\)Business (2010)

    Google Scholar 

  38. Eliav, E., Kaldor, U., Ishikawa, Y.: Open-shell relativistic coupled-cluster method with Dirac-Fock-Breit wave functions: energies of the gold atom and its cation. Phys. Rev. A 49(3), 1724 (1994)

    Google Scholar 

  39. Esteban, M.J., Lewin, M., Séré, E.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. 45, 535 (2008)

    Article  MATH  Google Scholar 

  40. Faegri Jr., K.: Relativistic Gaussian basis sets for the elements K-Uuo. Theor. Chem. Acc. 105(3), 252 (2001)

    Google Scholar 

  41. Filatov, M., Cremer, D.: Representation of the exact relativistic electronic Hamiltonian within the regular approximation. J. Chem. Phys. 119(22), 11526 (2003)

    Google Scholar 

  42. Filatov, M., Cremer, D.: Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. J. Chem. Phys. 122(6), 064104 (2005)

    Google Scholar 

  43. Filatov, M., Dyall, K.G.: On convergence of the normalized elimination of the small component (NESC) method. Theor. Chem. Acc. 117(3), 333 (2006)

    Google Scholar 

  44. Fleig, T.: Relativistic wave-function based electron correlation methods. Chem. Phys. 395, 2 (2012)

    Google Scholar 

  45. Fleig, T., Jensen, H.J.A., Olsen, J., Visscher, L.: The generalized active space concept for the relativistic treatment of electron correlation. III. Large-scale configuration interaction and multiconfiguration self-consistent-field four-component methods with application to UO[sub 2]. J. Chem. Phys. 124(10), 104106 (2006)

    Google Scholar 

  46. Fleig, T., Olsen, J., Visscher, L.: The generalized active space concept for the relativistic treatment of electron correlation. II. Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application. J. Chem. Phys. 119(6), 2963 (2003)

    Google Scholar 

  47. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  48. Green, L., Mulder, M., Milner, P.: Correlation energy in the ground state of He I. Phys. Rev. 91(1), 35 (1953)

    Google Scholar 

  49. Hall, G.G.: The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials. Proc. R. Soc. Lond. A 205, 541 (1951)

    Google Scholar 

  50. Hess, B.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742 (1986)

    Google Scholar 

  51. Hess, B.A.: Perspective on "Zur Quantentheorie der Spektrallinien". Theor. Chem. Acc. 103(3–4), 168 (2000)

    Google Scholar 

  52. Heully, J.L., Lindgren, I., Lindroth, E., Lundquist, S., Mårtensen-Pendrill, A.M.: Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure. J. Phys. B: At. Mol. Phys. 19, 2799 (1986)

    Google Scholar 

  53. Heully, J.L., Lindgren, I., Lindroth, E., Mårtensson-Pendrill, A.M.: Comment on relativistic wave equations and negative-energy states. Phys. Rev. A 33(6), 4426 (1986)

    Google Scholar 

  54. Hinze, J.: MC-SCF. I. The multi-configuration self-consistent-field method. J. Chem. Phys. 59, 6424 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  55. Ho, Y.: The Method of Complex Coordinate Rotation and its applications to atomic collision processes. Phys. Rep. 99(1), 1 (1983)

    Google Scholar 

  56. Hylleraas, E.A.: Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 54(5–6), 347 (1929)

    Google Scholar 

  57. Hylleraas, E.A., Undheim, B.: Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium. Z. Phys. 65(11), 759 (1930)

    Google Scholar 

  58. Ilias, M., Saue, T.: An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J. Chem. Phys. 126(6), 064102 (2007)

    Google Scholar 

  59. Indelicato, P.: Projection operators in multiconfiguration Dirac-Fock calculations: application to the ground state of heliumlike ions. Phys. Rev. A 51(2), 1132 (1995)

    Google Scholar 

  60. Indelicato, P., Desclaux, J.P.: Projection operator in the multiconfiguration Dirac-Fock method. Phys. Scr. T46, 110 (1993)

    Google Scholar 

  61. Indelicato, P., Desclaux, J.P.: Projection operator in the multiconfiguration Dirac-Fock method. Phys. Scr. T46, 110 (1993)

    Article  ADS  Google Scholar 

  62. Ishikawa, Y., Binning, R., Sando, K.: Dirac-Fock discrete-basis calculations on the beryllium atom. Chem. Phys. Lett. 101(1), 111 (1983)

    Google Scholar 

  63. Jastrow, R.: Many-body problem with strong forces. Phys. Rev. 98(5), 1479 (1955)

    Google Scholar 

  64. Jensen, H.J.A., Dyall, K.G., Saue, T., Fægri Jr, K.: Relativistic four-component multi-configurational self-consistent-field theory for molecules: Formalism. J. Chem. Phys. 104(11), 4083 (1996)

    Article  ADS  Google Scholar 

  65. Kedziera, D., Barysz, M.: Non-iterative approach to the infinite-order two-component (IOTC) relativistic theory and the non-symmetric algebraic Riccati equation. Chem. Phys. Lett. 446(1–3), 176 (2007)

    Google Scholar 

  66. Klopper, W., Bak, K.L., Jørgensen, P., Olsen, J., Helgaker, T.: Highly accurate calculations of molecular electronic structure. J. Phys. B 32(13), R103 (1999)

    Google Scholar 

  67. Klopper, W., Manby, F.R., Ten-No, S., Valeev, E.F.: R12 methods in explicitly correlated molecular electronic structure theory. Int. Rev. Phys. Chem. 25(3), 427 (2006)

    Google Scholar 

  68. Knecht, S., Fux, S., van Meer, R., Visscher, L., Reiher, M., Saue, T.: Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury. Theor. Chem. Acc. 129, 631 (2011)

    Google Scholar 

  69. Knecht, S., Jensen, H.J.A., Fleig, T.: Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH. J. Chem. Phys. 132(1), 014108 (2010)

    Google Scholar 

  70. Kolakowska, A., Talman, J., Aashamar, K.: Minimax variational approach to the relativistic two-electron problem. Phys. Rev. A 53(1), 168 (1996)

    Google Scholar 

  71. Kukulin, V.I., Krasnopol’sky, V.M.: Horáček: Theory of Resonances. Kluwer Academic Publishers, Dodrecht (1989)

    Google Scholar 

  72. Kutzelnigg, W.: Completeness of a kinetically balanced Gaussian basis. J. Chem. Phys. 126, 201103 (2007)

    Article  ADS  Google Scholar 

  73. Kutzelnigg, W.: Solved and unsolved problems in relativistic quantum chemistry. Chem. Phys. 395, 16 (2012)

    Article  ADS  Google Scholar 

  74. Kutzelnigg, W., Liu, W.: Quasirelativistic theory equivalent to fully relativistic theory. J. Chem. Phys. 123(24), 241102 (2005)

    Google Scholar 

  75. Kutzelnigg, W., Liu, W.: Quasirelativistic theory I. Theory in terms of a quasi-relativistic operator. Mol. Phys. 104(13–14), 2225 (2006)

    Google Scholar 

  76. Laerdahl, J.K., Saue, T., Fægri Jr, K.: Direct relativistic MP2: properties of ground state CuF. AgF and AuF. Theor. Chem. Acc. 97(1–4), 177 (1997)

    Article  Google Scholar 

  77. Langhoff, S.R., Davidson, E.R.: Configuration interaction calculations on the nitrogen molecule. Int. J. Quantum Chem. 8, 61 (1974)

    Article  Google Scholar 

  78. Lee, Y.S., McLean, A.D.: Relativistic effects on Re and De in AgH and AuH from all-electron Dirac-Hartree–Fock calculations. J. Chem. Phys. 76(1), 735 (1982)

    Google Scholar 

  79. van Leeuwen, R., van Lenthe, E., Baerends, E.J., Snijders, J.G.: Exact solutions of regular approximate relativistic wave equations for hydrogen-like atoms. J. Chem. Phys. 101(2), 1272 (1994)

    Google Scholar 

  80. van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99(6), 4597 (1993)

    Google Scholar 

  81. van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic total energy using regular approximations. J. Chem. Phys. 101, 9783 (1994)

    Article  ADS  Google Scholar 

  82. van Lenthe, E., van Leeuwen, R., Baerends, E.J., Snijders, J.G.: Relativistic regular two-component Hamiltonians. Int. J. Quantum Chem. 57(3), 281 (1996)

    Google Scholar 

  83. van Lenthe, E., Snijders, J.G., Baerends, E.J.: The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505 (1996)

    Article  ADS  Google Scholar 

  84. Lindgren, I.: The coupled-cluster approach to non-relativistic many-body calculations. Phys. Scr. 36, 591 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  85. Lindgren, I., Morrison, J.: Atomic Many-Body Theory, 2nd edn. Springer, Berlin, Heidelberg (1986)

    Book  Google Scholar 

  86. Liu, J., Salumbides, E.J., Hollenstein, U., Koelemeij, J.C.J., Eikema, K.S.E., Ubachs, W., Merkt, F.: Determination of the ionization and dissociation energies of the hydrogen molecule. J. Chem. Phys. 130(17), 174306 (2009)

    Google Scholar 

  87. Liu, J., Sprecher, D., Jungen, C., Ubachs, W., Merkt, F.: Determination of the ionization and dissociation energies of the deuterium molecule (D(2)). J. Chem. Phys. 132(15), 154301 (2010)

    Google Scholar 

  88. Liu, W.: Ideas of relativistic quantum chemistry. Mol. Phys. 108, 1679–1706 (2010)

    Article  ADS  Google Scholar 

  89. Liu, W.: Perspectives of relativistic quantum chemistry: the negative energy cat smiles. Phys. Chem. Chem. Phys. 14(1), 35 (2012)

    Google Scholar 

  90. Liu, W., Kutzelnigg, W.: Quasirelativistic theory. II. Theory at matrix level. J. Chem. Phys. 126(11), 114107 (2007)

    Google Scholar 

  91. Liu, W., Peng, D.: Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J. Chem. Phys. 125(4), 44102 (2006)

    Google Scholar 

  92. Liu, W., Peng, D.: Exact two-component Hamiltonians revisited. J. Chem. Phys. 131(3), 031104 (2009)

    Google Scholar 

  93. Mark, F., Schwarz, W.: New representation of the \({\bf {alpha}}\cdot {\bf {p}}\) operator in the solution of Dirac-type equations by the linear-expansion method. Phys. Rev. Lett. 48(10), 673 (1982)

    Google Scholar 

  94. Mastalerz, R., Lindh, R., Reiher, M.: The Douglas-Kroll-Hess electron density at an atomic nucleus. Chem. Phys. Lett. 465, 157 (2008)

    Google Scholar 

  95. Mastalerz, R., Reiher, M.: Relativistic electronic structure theory for molecular spectroscopy. In: Merkt, F., Quack, M. (eds.) Handbook of High Resolution Spectroscopy, pp. 405–442. Wiley, Chichester (2011)

    Google Scholar 

  96. Mátyus, E.: On the calculation of resonances in pre-Born-Oppenheimer molecular structure theory. J. Phys. Chem. A 117, 7195 (2013)

    Google Scholar 

  97. Mátyus, E., Hutter, J., Müller-Herold, U., Reiher, M.: Extracting elements of molecular structure from the all-particle wave function. J. Chem. Phys. 135(20), 204302 (2011)

    Google Scholar 

  98. Mátyus, E., Hutter, J., Müller-Herold, U., Reiher, M.: On the emergence of molecular structure. Phys. Rev. A 83(5), 052512 (2011)

    Google Scholar 

  99. Mátyus, E., Reiher, M.: Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation. J. Chem. Phys. 137(2), 024104 (2012)

    Google Scholar 

  100. Mittleman, M.: Configuration-space Hamiltonian for heavy atoms and correction to the breit interaction. Phys. Rev. A 5(6), 2395 (1972)

    Google Scholar 

  101. Mittleman, M.: Theory of relativistic effects on atoms: Configuration-space Hamiltonian. Phys. Rev. A 24(3), 1167 (1981)

    Google Scholar 

  102. Møller, C., Plesset, M.S.: Note on an Approximation treatment for many-electron systems. Phys. Rev. 46, 618 (1934)

    Google Scholar 

  103. Moncho, S., Autschbach, J.: Relativistic zeroth-order regular approximation combined with nonhybrid and hybrid density functional theory: performance for NMR indirect nuclear Spin-Spin coupling in heavy metal compounds. J. Chem. Theory Comput. 6(1), 223 (2010)

    Google Scholar 

  104. Nakajima, T., Hirao, K.: The Douglas-Kroll-Hess approach. Chem. Rev. 112, 385 (2012)

    Google Scholar 

  105. Ottschofski, E., Kutzelnigg, W.: Direct perturbation theory of relativistic effects for explicitly correlated wave functions: the he isoelectronic series. J. Chem. Phys. 106(16), 6634 (1997)

    Google Scholar 

  106. Pachucki, K., Komasa, J.: Rovibrational levels of HD. Phys. Chem. Chem. Phys. 12(32), 9188 (2010)

    Google Scholar 

  107. Pachucki, K., Yerokhin, V.: Reexamination of the helium fine structure. Phys. Rev. A 79(6) (2009)

    Google Scholar 

  108. Parpia, F., Grant, I.: Accurate Dirac-Coulomb energies for the ground states of helium-like atoms. J. Phys. B 23, 211 (1990)

    Google Scholar 

  109. Peng, D., Hirao, K.: An arbitrary order Douglas-Kroll method with polynomial cost. J. Chem. Phys. 130, 044102 (2009)

    Article  ADS  Google Scholar 

  110. Peng, D., Liu, W., Xiao, Y., Cheng, L.: Making four- and two-component relativistic density functional methods fully equivalent based on the idea of "from atoms to molecule". J. Chem. Phys. 127(10), 104106 (2007)

    Google Scholar 

  111. Peng, D., Middendorf, N., Weigend, F., Reiher, M.: An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J. Chem. Phys. 138, 184105 (2013)

    Article  ADS  Google Scholar 

  112. Peng, D., Reiher, M.: Exact decoupling of the relativistic fock operator. Theor. Chem. Acc. 131, 1081 (2012)

    Article  Google Scholar 

  113. Peng, D., Reiher, M.: Local relativistic exact decoupling. J. Chem. Phys. 136(24), 244108 (2012)

    Google Scholar 

  114. Pernpointner, M., Visscher, L.: Parallelization of four-component calculations. II. Symmetry-driven parallelization of the 4-Spinor CCSD algorithm. J. Comput. Chem. 24(6), 754 (2003)

    Google Scholar 

  115. Pestka, G.: Variational solution of the Dirac-Coulomb equation using explicitly correlated wavefunctions. Matrix elements and radial integrals. J. Phys. A 31(29), 6243 (1998)

    Google Scholar 

  116. Pestka, G.: Upper bounds to the eigenvalues of the Dirac Hamiltonian. Phys. Scr. 69, 203 (2004)

    Article  ADS  MATH  Google Scholar 

  117. Pestka, G., Bylicki, M., Karwowski, J.: Application of the complex-coordinate rotation to the relativistic Hylleraas-CI method: a case study. J. Phys. B 39(14), 2979 (2006)

    Google Scholar 

  118. Pestka, G., Bylicki, M., Karwowski, J.: Complex coordinate rotation and relativistic Hylleraas-CI: helium isoelectronic series. J. Phys. B 40(12), 2249 (2007)

    Google Scholar 

  119. Pestka, G., Bylicki, M., Karwowski, J.: Dirac-Coulomb equation: playing with artifacts. In: Wilson, S., Grout, P.J., Maruani, J., Delgado-Barrio, G., Piecuch, P. (eds.) Frontiers in Quantum Systems in Chemistry and Physics, p. 215. Springer, Berlin (2008)

    Google Scholar 

  120. Pestka, G., Bylicki, M., Karwowski, J.: Geminals in Dirac-Coulomb Hamiltonian eigenvalue problem. J. Math. Chem. 50(3), 510 (2012)

    Google Scholar 

  121. Pestka, G., Karwowski, J.: Dirac-Coulomb Hamiltonian in N-electron model spaces. Collect. Czech. Chem. Commun. 68(2), 275 (2003)

    Google Scholar 

  122. Pestka, G., Tatewaki, H., Karwowski, J.: Relativistic correlation energies of heliumlike atoms. Phys. Rev. A 70(2), 024501 (2004)

    Google Scholar 

  123. Piszczatowski, K., Łach, G., Przybytek, M., Komasa, J., Pachucki, K., Jeziorski, B.: Theoretical determination of the dissociation energy of molecular hydrogen. J. Chem. Theory Comput. 5(11), 3039 (2009)

    Google Scholar 

  124. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88(3), 563 (1988)

    Google Scholar 

  125. Pyykkö, P.: Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012)

    Article  ADS  Google Scholar 

  126. Pyykkö, P., Desclaux, J.P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12(8), 276 (1979)

    Google Scholar 

  127. Reiher, M.: Douglas-Kroll-Hess Theory: a relativistic electrons-only theory for chemistry. Theor. Chem. Acc. 116, 241 (2006)

    Google Scholar 

  128. Reiher, M.: Relativistic Douglas-Kroll-Hess theory. WIREs: Comp. Mol. Sci. 2, 139 (2012)

    Google Scholar 

  129. Reiher, M., Hinze, J.: Four-component Ab Initio methods for atoms, molecules and solids. In: Hess, B.A. (ed.) Relativistic Effects in Heavy-Element Chemistry and Physics, Chap. 2, p. 61. Wiley, Weinheim (2003)

    Google Scholar 

  130. Reiher, M., Wolf, A.: Exact decoupling of the Dirac Hamiltonian. I. General theory. J. Chem. Phys. 121(5), 2037 (2004)

    Google Scholar 

  131. Reiher, M., Wolf, A.: Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J. Chem. Phys. 121, 10945 (2004)

    Google Scholar 

  132. Reiher, M., Wolf, A.: Relativistic Quantum Chemistry. Wiley-VCH, Weinheim (2009)

    Book  Google Scholar 

  133. Reinhardt, W.P.: Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33, 223 (1982)

    Article  ADS  Google Scholar 

  134. Roos, B.O.: The complete active space self-consistent field method and its applications in electronic structure calculations. Adv. Chem. Phys. 69, 399 (1987)

    Google Scholar 

  135. Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69 (1951)

    Article  ADS  MATH  Google Scholar 

  136. Sadlej, A.J., Snijders, J.G., van Lenthe, E., Baerends, E.J.: Four component regular relativistic Hamiltonians and the perturbational treatment of Diracs equation. J. Chem. Phys. 102(4), 1758 (1995)

    Google Scholar 

  137. Saue, T.: Relativistic Hamiltonians for chemistry: a primer. ChemPhysChem 12(17), 3077 (2011)

    Google Scholar 

  138. Saue, T., Visscher, L.: Four-component electronic structure methods for molecules. In: Wilson, S., Kaldor, U. (eds.) Theoretical Chemistry and Physics of Heavy and Superheavy Elements, Chap. 6, p. 211. Kluwer, Dordrecht (2003)

    Google Scholar 

  139. Schwarz, W., Wallmeier, H.: Basis set expansions of relativistic molecular wave equations. Mol. Phys. 46(5), 1045 (1982)

    Google Scholar 

  140. Schwarz, W.H.E., Wechsel-Trakowski, E.: The two problems connected with Dirac-Breit-Roothaan calculations. Chem. Phys. Lett. 85(1), 94 (1982)

    Article  ADS  Google Scholar 

  141. Schwerdtfeger, P.: Relativity and chemical bonding. In: Frenking, G., Shaik, S. (eds.) The Chemical Bond. Wiley-VCH, Weinheim (2014)

    Google Scholar 

  142. Shabaev, V., Tupitsyn, I., Yerokhin, V., Plunien, G., Soff, G.: Dual kinetic balance approach to basis-set expansions for the Dirac equation. Phys. Rev. Lett. 93(13), 130405 (2004)

    Google Scholar 

  143. Shepard, R.: The multiconfiguration self-consistent field method. Adv. Chem. Phys. 69, 63 (1987)

    Google Scholar 

  144. Siedentop, H., Stockmeyer, E.: An analytic Douglas-Kroll-Heß method. Phys. Lett. A 341(5–6), 473 (2005)

    Google Scholar 

  145. Siedentop, H., Stockmeyer, E.: The Douglas-Kroll-Heß method: convergence and block-diagonalization of Dirac operators. Ann. Henri Poincaré 7(1), 45 (2006)

    Google Scholar 

  146. Sikkema, J., Visscher, L., Saue, T., Ilias, M.: The molecular mean-field approach for correlated relativistic calculations. J. Chem. Phys. 131(12), 124116 (2009)

    Google Scholar 

  147. Simmen, B., Mátyus, E., Reiher, M.: In preparation (2013)

    Google Scholar 

  148. Simmen, B., Mátyus, E., Reiher, M.: Elimination of the translational kinetic energy contamination in pre-Born-Oppenheimer calculations. Mol. Phys. 111 (14–15), 2086 (2013)

    Google Scholar 

  149. Simon, B.: Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97, 247 (1973)

    Google Scholar 

  150. Singer, K.: The use of Gaussian (exponential quadratic) wave functions in molecular problems. I. General formulae for the evaluation of integrals. Proc. R. Soc. Lond. Ser. A 258(1294), 412 (1960)

    Google Scholar 

  151. Slater, J.: Atomic shielding constants. Phys. Rev. 36(1), 57 (1930)

    Google Scholar 

  152. Sommerfeld, A., Der, A.: Zur Quantentheorie der Spektrallinien. Ann. Phys. 356(17), 1 (1916)

    Google Scholar 

  153. Sprecher, D., Liu, J., Jungen, C., Ubachs, W., Merkt, F.: Communication: the ionization and dissociation energies of HD. J. Chem. Phys. 133(11), 111102 (2010)

    Google Scholar 

  154. Stanton, R.E., Havriliak, S.: Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys. 81(4), 1910 (1984)

    Google Scholar 

  155. Sucher, J.: Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A 22(2), 348 (1980)

    Google Scholar 

  156. Sucher, J.: Erratum: Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A 23(1), 388 (1981)

    Google Scholar 

  157. Sucher, J.: Relativistic many-electron Hamiltonians. Phys. Scr. 36, 271 (1987)

    Article  ADS  Google Scholar 

  158. Suzuki, Y., Usukura, J., Varga, K.: New description of orbital motion with arbitrary angular momenta. J. Phys. B 31(1), 31 (1998)

    Google Scholar 

  159. Suzuki, Y., Varga, K.: Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems, Lecture Notes in Physics, vol. 54. Springer, Berlin, Heidelberg (1998)

    Google Scholar 

  160. Talman, J.D.: Minimax principle for the Dirac equation. Phys. Rev. Lett. 57(9), 1091 (1986)

    Google Scholar 

  161. Taylor, P.R.: Coupled-cluster methods in quantum chemistry. In: Roos, B.O. (ed.) Lecture Notes in Quantum Chemistry II, Chap. 3, p. 125. Springer, Berlin (1994)

    Google Scholar 

  162. Ten-no, S., Noga, J.: Explicitly correlated electronic structure theory from R12/F12 ansätze. WIREs Comput. Mol. Sci. 2, 114 (2012)

    Google Scholar 

  163. Thyssen, J.: Development and application of methods for correlated relativistic claculations of molecular proerties. Ph.D. thesis, University of Southern Denmark, Odense, (2001)

    Google Scholar 

  164. Thyssen, J., Fleig, T., Jensen, H.J.A.: A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. J. Chem. Phys. 129(3), 034109 (2008)

    Google Scholar 

  165. van Wüllen, C.: Negative energy states in relativistic quantum chemistry. Theor. Chem. Acc. 131(1), 1082 (2012)

    Google Scholar 

  166. Varga, K., Suzuki, Y., Usukura, J.: Global-vector representation of the angular motion of few-particle systems. Few-Body Syst. 24(1), 81 (1998)

    Google Scholar 

  167. Visscher, L., Eliav, E., Kaldor, U.: Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. J. Chem. Phys. 115(21), 9720 (2001)

    Google Scholar 

  168. Visscher, L., Lee, T.J., Dyall, K.G.: Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J. Chem. Phys. 105(19), 8769 (1996)

    Google Scholar 

  169. Visser, O., Visscher, L., Aerts, P.J.C., Nieuwpoort, W.C.: Molecular open shell configuration interaction calculations using the Dirac-Coulomb Hamiltonian: The \(f^6\)-manifold of an embedded EuO\(_6^{9-}\) cluster. J. Chem. Phys. 96(4), 2910 (1992)

    Google Scholar 

  170. Wang, D., van Gunsteren, W.F., Chai, Z.: Recent advances in computational actinoid chemistry. Chem. Soc. Rev. 41, 5836 (2012)

    Google Scholar 

  171. Werner, H.J.: Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration referece configuration-interaction methods. Adv. Chem. Phys. 69, 1 (1987)

    Google Scholar 

  172. Wolf, A., Reiher, M.: Exact decoupling of the Dirac Hamiltonian. III. Molecular properties. J. Chem. Phys. 124, 064102 (2006)

    Article  ADS  Google Scholar 

  173. Wolf, A., Reiher, M.: Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. J. Chem. Phys. 124, 064103 (2006)

    Article  ADS  Google Scholar 

  174. Wolf, A., Reiher, M., Hess, B.A.: The generalized Douglas-Kroll transformation. J. Chem. Phys. 117(20), 9215 (2002)

    Google Scholar 

  175. Wolf, A., Reiher, M., Hess, B.A.: Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation. J. Chem. Phys. 120, 8624 (2004)

    Google Scholar 

  176. Yanai, T., Harrison, R.J., Nakajima, T., Ishikawa, Y., Hirao, K.: New Implementation of molecular double point group symmetry in four-component relativistic Gaussian-type spinors. Int. J. Quantum Chem. 107(6), 1382 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Reiher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simmen, B., Reiher, M. (2014). Relativistic Quantum Theory of Many-Electron Systems. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_1

Download citation

Publish with us

Policies and ethics