Skip to main content

Stationary Black-Hole Binaries: A Non-existence Proof

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. Based on the solution of a boundary problem for disconnected (Killing) horizons and the resulting violation of characteristic black hole properties, we present a non-existence proof for the equilibrium configuration in question. From a mathematical point of view, this result is a further example for the efficiency of the inverse (“scattering”) method in non-linear theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following, we also use the complex coordinates \(z=\rho +\mathrm {i}\zeta \) and \(\bar{z} = \rho -\mathrm {i}\zeta \). \(t\) is the time coordinate.

  2. 2.

    From this point of view, the Ernst potential of the Kerr solution depends on one real parameter and two dimensionless coordinates.

References

  1. Bach, R., Weyl, H.: Neue Lösungen der Einsteinschen Gravitationsgleichungen. Mathemat. Z. 13, 134 (1922). [Republication in English: Gen. Relativ. Gravit. 44, 817, (2012)]

    Article  MATH  Google Scholar 

  2. Neugebauer, G., Hennig, J.: Non-existence of stationary two-black-hole configurations. Gen. Relativ. Gravit. 41, 2113 (2009). doi:10.1007/s10714-009-0840-8

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Hennig, J., Neugebauer, G.: Non-existence of stationary two-black-hole configurations: the degenerate case. Gen. Relativ. Gravit. 43, 3139 (2011). doi:10.1007/s10714-011-1228-0

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Neugebauer, G., Hennig, J.: Stationary two-black-hole configurations: a non-existence proof. J. Geom. Phys. 62, 613 (2012). doi:10.1016/j.geomphys.2011.05.008

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Neugebauer, G.: A general integral of the axially symmetric stationary Einstein equations. J. Phys. A 13, L19 (1980). doi:10.1088/0305-4470/13/2/003

    Article  ADS  MathSciNet  Google Scholar 

  6. Neugebauer, G.: Gravitostatics and rotating bodies. In: Hall, G.S., Pulham J.R. (eds.) Proceedings of 46th Scottish Universities Summer School in Physics (Aberdeen), Copublished by SUSSP Publications, Edinburgh, and Institute of Physics Publishing, London (1996)

    Google Scholar 

  7. Kramer, D., Neugebauer, G.: The superposition of two Kerr solutions. Phys. Lett. A 75, 259 (1980). doi:10.1016/0375-9601(80)90556-3

    Article  ADS  MathSciNet  Google Scholar 

  8. Dietz, W., Hoenselaers, C.: Two mass solution of Einstein’s vacuum equations: the double Kerr solution. Ann. Phys. 165, 319 (1985). doi:10.1016/0003-4916(85)90301-X

    Article  ADS  MathSciNet  Google Scholar 

  9. Hoenselaers, C.: Remarks on the double-Kerr-solution. Prog. Theor. Phys. 72, 761 (1984). doi:10.1143/PTP.72.761

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Hoenselaers, C., Dietz, W.: Talk given at the GR10 meeting, Padova (1983)

    Google Scholar 

  11. Kihara, M., Tomimatsu, A.: Some properties of the symmetry axis in a superposition of two Kerr solutions. Prog. Theor. Phys. 67, 349 (1982). doi:10.1143/PTP.67.349

    Article  ADS  MathSciNet  Google Scholar 

  12. Kramer, D.: Two Kerr-NUT constituents in equilibrium. Gen. Relativ. Gravit. 18, 497 (1980). doi:10.1007/BF00770465

    Article  ADS  Google Scholar 

  13. Krenzer, G.: Schwarze Löcher als Randwertprobleme der axialsymmetrisch-stationären Einstein-Gleichungen, PhD Thesis, University of Jena (2000)

    Google Scholar 

  14. Manko, V.S., Ruiz, E.: Exact solution of the double-Kerr equilibrium problem. Class. Quantum Grav. 18, L11 (2001). doi:10.1088/0264-9381/18/2/102

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Manko, V.S., Ruiz, E., Sanabria-Gómez, J.D.: Extended multi-soliton solutions of the Einstein field equations: II. Two comments on the existence of equilibrium states. Class. Quantum Grav. 17, 3881 (2000). doi:10.1088/0264-9381/18/2/102

    Article  ADS  MATH  Google Scholar 

  16. Tomimatsu, A., Kihara, M.: Conditions for regularity on the symmetry axis in a superposition of two Kerr-NUT solutions. Prog. Theor. Phys. 67, 1406 (1982). doi:10.1143/PTP.67.1406

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Yamazaki, M.: Stationary line of \(N\) Kerr masses kept apart by gravitational spin-spin interaction. Phys. Rev. Lett. 50, 1027 (1983). doi: 10.1103/PhysRevLett.50.1027

    Article  ADS  MathSciNet  Google Scholar 

  18. Varzugin, G.: Equilibrium configuration of black holes and the inverse scattering method. Theoret. Math. Phys. 111, 667 (1997). doi:10.1007/BF02634055

    Article  MATH  MathSciNet  Google Scholar 

  19. Varzugin, G.: The interaction force between rotating black holes in equilibrium. Theoret. Math. Phys. 116, 1024 (1998). doi:10.1007/BF02557144

    Article  MATH  MathSciNet  Google Scholar 

  20. Belinskiĭ, V.A., Zakharov, V.E.: Integration of the Einstein equations by means of the inverse scattering problem technique and construction of exact soliton solutions. Pis’ma Zh. Eksp. Teor. Fiz. (in Russian) 75, 1955 (1978). [English translation: Sov. Phys. JETP 48, 985 (1978)]

    ADS  Google Scholar 

  21. Belinskiĭ, V.A., Zakharov, V.E.: Stationary gravitational solitons with axial symmetry. Pis’ma Zh. Eksp. Teor. Fiz. (in Russian) 77, 3 (1979). [English translation: Sov. Phys. JETP 50, 1 (1979)]

    ADS  Google Scholar 

  22. Ansorg, M., Petroff, D.: Negative Komar mass of single objects in regular, asymptotically flat spacetimes. Class. Quantum Grav. 23, L81 (2006). doi:10.1088/0264-9381/23/24/L01

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Ansorg, M., Pfister, H.: A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quantum Grav. 25, 035009 (2008). doi:10.1088/0264-9381/25/3/035009

    Article  ADS  MathSciNet  Google Scholar 

  24. Hennig, J., Ansorg, M., Cederbaum, C.: A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 162002 (2008). doi:10.1088/0264-9381/25/16/162002

    Article  ADS  MathSciNet  Google Scholar 

  25. Booth, I., Fairhurst, S.: Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 77, 084005 (2008). doi:10.1103/PhysRevD.77.084005

    Article  ADS  MathSciNet  Google Scholar 

  26. Chruściel, P.T., Eckstein, M., Nguyen, L., Szybka, S.J.: Existence of singularities in two-Kerr black holes. Class. Quantum Grav. 28, 245017 (2011). doi:10.1088/0264-9381/28/24/245017

    Article  ADS  Google Scholar 

  27. Dain, S., Reiris, M.: Area-angular momentum inequality for axisymmetric black holes. Phys. Rev. Lett. 107, 051101 (2011). doi:10.1103/PhysRevLett.107.051101

    Article  ADS  Google Scholar 

  28. Dain, S.: Geometric inequalities for axially symmetric black holes. Class. Quantum Grav. 29, 073001 (2012). doi:10.1088/0264-9381/29/7/073001

    Article  ADS  MathSciNet  Google Scholar 

  29. Carter, B.: Black hole equilibrium states, In: deWitt, C., deWitt, B. (eds.) Black Holes (Les Houches). Gordon and Breach, London (1973)

    Google Scholar 

  30. Neugebauer, G.: Recursive calculation of axially symmetric stationary Einstein fields. J. Phys. A 13, 1737 (1980). doi:10.1088/0305-4470/13/5/031

    Article  ADS  MathSciNet  Google Scholar 

  31. Neugebauer, G., Meinel, R.: Progress in relativistic gravitational theory using the inverse scattering method. J. Math. Phys. 44, 3407 (2003). doi:10.1063/1.1590419

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Hauser, I., Ernst, F.J.: Proof of a Geroch conjecture. J. Math. Phys. 22, 1051 (1981). doi:10.1063/1.525012

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Meinel, R., Ansorg, M., Kleinwächter, A., Neugebauer, G., Petroff, D.: Relativistic Figures of Equilibrium. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  34. Schoen, R.M., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45 (1979). doi:10.1007/BF01940959

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Schoen, R., Yau, S.T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231 (1981). doi:10.1007/BF01942062

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Neugebauer, G., Meinel, R.: The Einsteinian gravitational field of a rigidly rotating disk of dust. Astrophys. J. 414, L97 (1993). doi:10.1086/187005

    Article  ADS  Google Scholar 

  37. Neugebauer, G., Meinel, R.: General relativistic gravitational field of a rigidly rotating disk of dust: axis potential, disk metric and surface mass density. Phys. Rev. Lett. 73, 2166 (1994). doi:10.1103/PhysRevLett.73.2166

    Article  ADS  Google Scholar 

  38. Neugebauer, G., Meinel, R.: General relativistic gravitational field of a rigidly rotating disk of dust: solution in terms of ultraelliptic functions. Phys. Rev. Lett. 75, 3046 (1995). doi:10.1103/PhysRevLett.75.3046

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Neugebauer, G.: Rotating bodies as a boundary value problems. Ann. Phys. (Leipzig) 9, 342 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Meinel, R.: Constructive proof of the Kerr-Newman black hole uniqueness including the extreme case. Class. Quantum Grav. 29, 035004 (2012). doi:10.1088/0264-9381/29/3/035004

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Reinhard Meinel, Marcus Ansorg and Andreas Kleinwächter for many valuable discussions and Ben Whale for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neugebauer, G., Hennig, J. (2014). Stationary Black-Hole Binaries: A Non-existence Proof. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_9

Download citation

Publish with us

Policies and ethics