Skip to main content

Stability of Marginally Outer Trapped Surfaces and Geometric Inequalities

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

Marginally outer trapped surfaces (MOTS) admit a notion of stability that in many respects generalizes a similar notion for minimal hypersurfaces. Stable MOTS play an interesting role in a number of geometric inequalities involving physical parameters such as area, mass, charge or, in the axially symmetric case, angular momentum. Some of those inequalities are global in nature while others are local, with interesting relationships between them. In this lecture the notion of stable MOTS will be reviewed and some of the geometric inequalities involving stable MOTS will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penrose, R.: Naked singularities. Ann. N.Y. Acad. Sci. 224, 125 (1973). doi:10.1111/j.1749-6632.1973.tb41447.x

    Article  ADS  Google Scholar 

  2. Mars, M.: Present status of the penrose inequality. Class. Quantum Grav. 26, 193001 (2009). doi:10.1088/0264-9381/26/19/193001

    Article  ADS  MathSciNet  Google Scholar 

  3. Gibbons, G.W.: The isoperimetric and bogomolny inequalities for black holes in global riemannian geometry. In: Willmore, T.J., Hitchin, N.J. (eds.) Ellis Horwood Series in Mathematics and Its Applications, pp. 194–202. Ellis Horwood, Chichester (1984)

    Google Scholar 

  4. Gibbons, G.W., Hawking, S.W., Horowitz, G.T., Perry, M.J.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295 (1983). doi:10.1007/BF01213209

    Article  ADS  MathSciNet  Google Scholar 

  5. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97 (1998). doi:10.1016/S0393-0440(97)00040-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dain, S., Lousto, C.O., Takahashi, R.: New conformally flat initial data for spinning black holes. Phys. Rev. D 66, 104038 (2002). doi:10.1103/PhysRevD.65.104038

    Article  ADS  MathSciNet  Google Scholar 

  7. Szabados L.B.: Quasi-local energy-momentum and angular momentum in GR: a review article. Living Rev. Relativity 7, lrr-2004-4 (2004). http://www.livingreviews.org/lrr-2004-4

  8. Dain, S.: The inequality between mass and angular momentum for axially symmetric black holes. Int. J. Mod. Phys. D 17, 519 (2008). doi:10.1142/S021827180801219X

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Dain, S.: Proof of the angular momentum-mass inequality for axisym-metric black holes. J. Differ. Geom. 79, 33 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Chruściel P.T., Lopes Costa J.: Mass, angular-momentum, and charge inequalities for axisymmetric initial data. Class. Quant. Grav. 26, 235013 (2009). doi:10.1088/0264-9381/26/23/235013

  11. Costa, J.L.: Proof of a Dain inequality with charge. J. Phys. A: Math. Theor. 43, 285202 (2010). doi:10.1088/1751-8113/43/28/285202

  12. Chruściel P.T., Li Y., Weinstein G.: Mass and angular-momentum inequalities for axi-symmetric initial data sets: II. Angular-momentum. Ann. Phys. (N.Y.) 323, 2591 (2008). doi:10.1016/j.aop.2007.12.011

  13. Dain, S.: Geometric inequalities for axially symmetric black holes. Class. Quantum Grav. 29, 073001 (2012). doi:10.1088/0264-9381/29/7/073001

    Article  ADS  MathSciNet  Google Scholar 

  14. Simon, W.: Gravitational field strength and generalized komar integral. Gen. Relativ. Gravit. 17, 439 (1985). doi:10.1007/BF00761903

    Article  ADS  MATH  Google Scholar 

  15. Ansorg, M., Pfister, H.: A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quantum Grav. 25, 035009 (2008). doi:10.1088/0264-9381/25/3/035009

    Article  ADS  MathSciNet  Google Scholar 

  16. Hennig, J., Ansorg, M., Cederbaum, C.: A universal inequality between the angular momentum and the horizon area for axisymmetric and stationary back holes with surrounding matter. Class. Quantum Grav. 25, 162002 (2008). doi:10.1088/0264-9381/25/16/162002

    Article  ADS  MathSciNet  Google Scholar 

  17. Hennig, J., Cederbaum, C., Ansorg, M.: A universal inequality for axisymmetric and stationary black holes with surrounding matter in the einstein-maxwell theory. Commun. Math. Phys. 293, 449 (2010). doi:10.1007/s00220-009-0889-y

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Neugebauer, G., Hennig, J.: Non-existence of stationary two-black-hole configurations. Gen. Relativ. Gravit. 41, 2113 (2009). doi:10.1007/s10714-009-0840-8

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Hennig, J., Neugebauer, G.: Non-existence of stationary two-black-hole configurations: the degenerate case. Gen. Relativ. Gravit. 43, 3139 (2011). doi:10.1007/s10714-011-1228-0

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hennig, J., Neugebauer, G.: Stationary two-black-hole configurations: a non-existence proof. J. Geom. Phys. 62, 613 (2012). doi:10.1016/j.geomphys.2011.05.008

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Chruściel, P.T., Eckstein, M., Nguyen, L., Szybka, S.: Existence of singularities in two-kerr black holes. Class. Quantum Grav. 28, 245017 (2011). doi:10.1088/0264-9381/28/24/245017

    Article  ADS  Google Scholar 

  22. Dain, S., Reiris, M.: Area—Angular momentum inequality for axisymmetric black holes. Phys. Rev. Lett. 107, 051101 (2011). doi:10.1103/PhysRevLett.107.051101

    Article  ADS  Google Scholar 

  23. Jaramillo, J.L., Reiris, M., Dain, S.: Black hole area-angular momentum inequality in non-vacuum spacetimes. Phys. Rev. D 84, 121503 (2011). doi:10.1103/PhysRevD.84.121503

    Article  ADS  Google Scholar 

  24. Dain, S., Jaramillo, J.L., Reiris, M.: Area-charge inequality for black holes. Class. Quantum Grav. 29, 035013 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gabach-Clement M.E., Jaramillo J.L., Reiris M.: Proof of the area-angular momentum-charge inequality for axisymmetric black holes, ArXiv e-prints 1207.6761 [gr-qc] (2012)

  26. Mars, M.: Stability of mots in totally geodesic null horizons. Class. Quantum Grav. 29, 145019 (2012). doi:10.1088/0264-9381/29/14/145019

    Article  ADS  MathSciNet  Google Scholar 

  27. Newman, R.P.A.C.: Topology and stability of marginal 2-surfaces. Class. Quantum Grav. 4, 277 (1987). doi:10.1088/0264-9381/4/2/011

    Article  ADS  MATH  Google Scholar 

  28. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second order elliptic differential operators. Commun. Pure Appl. Math. 29, 591 (1976). doi:10.1002/cpa.3160290606

    Article  Google Scholar 

  30. Galloway, G.J., Schoen, R.: A generalization of hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006). doi:10.1007/s00220-006-0019-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Hayward, S.: General laws of black-hole dynamics. Phys. Rev. D 49, 6467 (1994). doi:10.1103/PhysRevD.49.6467

    Article  ADS  MathSciNet  Google Scholar 

  32. Simon, W.: Bounds on area and charge for marginally trapped surfaces with a cosmological constant. Class. Quantum Grav. 29, 062001 (2012). doi:10.1088/0264-9381/29/6/062001

    Article  ADS  Google Scholar 

  33. Hawking, S.W.: The event horizon. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes, pp. 1–56. Gordon and Breach, New York (1973)

    Google Scholar 

  34. Galloway, G.J.: Rigidity of marginally trapped surfaces and the topology of black holes. Comm. Anal. Geom. 16, 217 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Woolgar, E.: Bounded area theorems for higher-genus black holes. Class. Quantum Grav. 16, 3005 (1999). doi:10.1088/0264-9381/16/9/316

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Gibbons, G.W.: Some comments on gravitational entropy and the inverse mean curvature flow. Class. Quantum Grav. 16, 1677 (1999). doi:10.1088/0264-9381/16/6/302

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Aceña, A., Dain, S., Gabach Clément, M.E.: Horizon area-angular momentum inequality for a class of axially symmetric black holes. Class. Quantum Grav. 28, 105014 (2011). doi:10.1088/0264-9381/28/10/105014

  38. Anderson, J.W.: Hyperbolic Geometry. Springer Undergraduate Mathematics Series. Springer, London (2007)

    Google Scholar 

  39. Booth, I., Fairhurst, S.: Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 77, 084005 (2008). doi:10.1103/PhysRevD.77.084005

    Article  ADS  MathSciNet  Google Scholar 

  40. Jaramillo, J.L.: A note on degeneracy, marginal stability and extremality of black hole horizons. Class. Quantum Grav. 29, 177001 (2012). doi:10.1088/0264-9381/29/17/177001

    Article  ADS  MathSciNet  Google Scholar 

  41. Hollands, S.: Horizon area-angular momentum inequality in higher dimensional spacetimes. Class. Quantum Grav. 29, 065006 (2012). doi:10.1088/0264-9381/29/6/065006

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mars, M. (2014). Stability of Marginally Outer Trapped Surfaces and Geometric Inequalities. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_8

Download citation

Publish with us

Policies and ethics