Skip to main content

Hamiltonian Formalism for Spinning Black Holes in General Relativity

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

A Hamiltonian treatment of gravitationally interacting spinning black holes is presented based on a tetrad generalization of the Arnowitt-Deser-Misner (ADM) canonical formalism of general relativity. The formalism is valid through linear order in the single spins. For binary systems, higher-order post-Newtonian Hamiltonians are given in explicit analytic forms. A next-to-leading order in spin generalization is presented, others are mentioned. Comparisons between the Hamiltonian formalisms by ADM, Dirac, and Schwinger are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dirac, P.A.M.: The theory of gravitation in Hamiltonian form. Proc. R. Soc. Lond. A 246, 333 (1958). doi:10.1098/rspa.1958.0142

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Dirac, P.A.M.: Fixation of coordinates in the hamiltonian theory of gravitation. Phys. Rev. 114, 924 (1959). doi:10.1103/PhysRev. 114.924

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Dirac, P.A.M.: Energy of the gravitational field. Phys. Rev. Lett. 2, 368 (1959). doi:10.1103/PhysRevLett. 2.368

    Article  ADS  MATH  Google Scholar 

  4. Arnowitt, R., Deser, S.: Quantum theory of gravitation: general formulation and linearized theory. Phys. Rev. 113, 745 (1959). doi:10.1103/PhysRev. 113.745

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Arnowitt, R., Deser, S., Misner, C.M.: Canonical variables in general relativity. Phys. Rev. 117, 1959 (1960). doi:10.1103/PhysRev. 117.1595

    Article  MathSciNet  Google Scholar 

  6. Arnowitt, R., Deser, S., Misner, C.M.: Consistency of the canonical reduction of general relativity. J. Math. Phys. 1, 434 (1960). doi:10.1063/1.1703677

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962). doi:10.1007/s10714-008-0661-1

  8. Schwinger, J.: Quantized gravitational field. Phys. Rev. 130, 1253 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Regge, T., Teitelboim, C.: Role of surface integrals in the hamiltonian formulation of general relativity. Ann. Phys. (N.Y.) 88, 286 (1974). doi:10.1016/0003-4916(74)90404-7

  10. Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, C., DeWitt, B.S. (eds.) Relativity, Groups, and Topology, pp. 315–520. Gordon and Breach, New York (1964)

    Google Scholar 

  11. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967). doi:10.1103/PhysRev. 160.1113

    Article  ADS  MATH  Google Scholar 

  12. Kimura, T.: Fixation of physical space-time coordinates and equation of motion of two-body problem. Prog. Theor. Phys. 26, 157 (1961). doi:10.1143/PTP.26.157

    Article  ADS  MATH  Google Scholar 

  13. Kibble, T.W.B.: Canonical variables for the interacting gravitational and Dirac fields. J. Math. Phys. 4, 1433 (1963). doi:10.1063/1.1703923

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Nelson, J.E., Teitelboim, C.: Hamiltonian formulation of the theory of interacting gravitational and electron fields. Ann. Phys. (N.Y.) 116, 86 (1978). doi:10.1016/0003-4916(78)90005-2

  15. Dirac, P.A.M.: Interacting gravitational and spinor fields. In: Recent Developments in General Relativity, pp. 191–207. Pergamon Press, Oxford (1962)

    Google Scholar 

  16. Schäfer, G.: The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM. Ann. Phys. (N.Y.) 161, 81 (1985). doi:10.1016/0003-4916(85)90337-9

  17. Ohta, T., Okamura, H., Kimura, T., Hiida, K.: Coordinate condition and higher order gravitational potential in canonical formalism. Prog. Theor. Phys. 51, 1598 (1974). doi:10.1143/PTP.51.1598

    Article  ADS  Google Scholar 

  18. Damour, T., Schäfer, G.: Lagrangians for \(n\) point masses at the second post-Newtonian approximation of general relativity. Gen. Relativ. Gravit. 17, 879 (1985). doi: 10.1007/BF00773685

    ADS  MATH  Google Scholar 

  19. Damour, T., Jaranowski, P., Schäfer, G.: Dimensional regularization of the gravita- tional interaction of point masses. Phys. Lett. B 513, 147 (2001). doi:10.1016/S0370-2693(01)00642-6

  20. Jaranowski, P., Schäfer, G.: Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems. Phys. Rev. D 55, 4712 (1997). doi:10.1103/PhysRevD.55.4712

    Article  ADS  Google Scholar 

  21. Schäfer, G.: The ADM Hamiltonian at the postlinear approximation. Gen. Relativ. Gravit. 18, 255 (1986). doi:10.1007/BF00765886

    Article  ADS  Google Scholar 

  22. Ledvinka, T., Schäfer, G., Bičák, J.: Relativistic closed-form Hamiltonian for many-body gravitating systems in the post-Minkowskian approximation. Phys. Rev. Lett. 100, 251101 (2008). doi:10.1103/PhysRevLett. 100.251101

    Article  ADS  MathSciNet  Google Scholar 

  23. Damour, T.: Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001). doi:10.1103/PhysRevD.64.124013

    Article  ADS  MathSciNet  Google Scholar 

  24. Damour, T., Jaranowski, P., Schäfer, G.: Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling. Phys. Rev. D 77, 064032 (2008). doi:10.1103/PhysRevD.77.064032

    Article  ADS  Google Scholar 

  25. Hartung, J., Steinhoff, J.: Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects. Phys. Rev. D 83, 044008 (2011). doi:10.1103/PhysRevD.83.044008

    Article  ADS  Google Scholar 

  26. Hartung, J., Steinhoff, J.: Next-to-next-to-leading order post-Newtonian spin-orbit Hamiltonian for self-gravitating binaries. Ann. Phys. (Berlin) 523, 783 (2011). doi:10.1002/andp.201100094

  27. Steinhoff, J., Wang, H.: Canonical formulation of gravitating spinning objects at 3.5 post-Newtonian order. Phys. Rev. D 81, 024022 (2010). doi:10.1103/PhysRevD.81.024022

    Article  ADS  Google Scholar 

  28. Steinhoff, J., Hergt, S., Schäfer, G.: The next-to-leading order gravitational spin(1)-spin(2) dynamics in Hamiltonian form. Phys. Rev. D 77, 081501 (2008). doi:10.1103/PhysRevD.77.081501

    Article  ADS  Google Scholar 

  29. Hartung, J., Steinhoff, J.: Next-to-next-to-leading order post-Newtonian spin(1)-spin(2) Hamiltonian for self-gravitating binaries. Ann. Phys. (Berlin) 523, 919 (2011). doi:10.1002/andp.201100163

  30. Wang, H., Steinhoff, J., Zeng, J., Schäfer, G.: Leading-order spin-orbit and spin(1)-spin(2) radiation-reaction Hamiltonians. Phys. Rev. D 84, 124005 (2011). doi:10.1103/PhysRevD.84.124005

    Article  ADS  Google Scholar 

  31. Steinhoff, J., Hergt, S., Schäfer, G.: Spin-squared Hamiltonian of next-to-leading order gravitational interaction. Phys. Rev. D 78, 101503 (2008). doi:10.1103/PhysRevD.78.101503

    Article  ADS  Google Scholar 

  32. Hergt, S., Schäfer, G.: Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of the Kerr geometry in approximate ADM coordinates. Phys. Rev. D 77, 104001 (2008). doi:10.1103/PhysRevD.77.104001

    Article  ADS  Google Scholar 

  33. Barausse, E., Racine, E., Buonanno, A.: Hamiltonian of a spinning test particle in curved spacetime. Phys. Rev. D 80, 104025 (2009). doi:10.1103/PhysRevD.80.104025

    Article  ADS  MathSciNet  Google Scholar 

  34. Brill, D.R., Lindquist, R.W.: Interation energy in geometrostatics. Phys. Rev. 131, 471 (1963). doi:10.1103/PhysRev. 131.471

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Jaranowski, P., Schäfer, G.: Lapse function for maximally sliced Brill-Lindquist initial data. Phys. Rev. D 65, 127501 (2002). doi:10.1103/PhysRevD.65.127501

    Article  ADS  MathSciNet  Google Scholar 

  36. Steinhoff, J., Schäfer, G.: Canonical formulation of self-gravitating spinning-object systems. Europhys. Lett. 87, 50004 (2009). doi:10.1209/0295-5075/87/50004

    Article  ADS  Google Scholar 

  37. Deser, S., Isham, C.J.: Canonical vierbein form of general relativity. Phys. Rev. D 14, 2505 (1976). doi:10.1103/PhysRevD.14.2505

    Article  ADS  MathSciNet  Google Scholar 

  38. Goldberger, W.D., Rothstein, I.Z.: An effective field theory of gravity for extended objects. Phys. Rev. D 73, 104029 (2006). doi:10.1103/PhysRevD.73.104029

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks Stanley Deser for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schäfer, G. (2014). Hamiltonian Formalism for Spinning Black Holes in General Relativity. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_7

Download citation

Publish with us

Policies and ethics