Skip to main content

Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

The question of motion in a gravitationally bound two-body system is a longstanding open problem of General Relativity. When the mass ratio \(\eta \) is small, the problem lends itself to a perturbative treatment, wherein corrections to the geodesic motion of the smaller object (due to radiation reaction, internal structure, etc.) are accounted for order by order in \(\eta \), using the language of an effective gravitational self-force. The prospect for observing gravitational waves from compact objects inspiralling into massive black holes in the foreseeable future has in the past 15 years motivated a program to obtain a rigorous formulation of the self-force and compute it for astrophysically interesting systems. I will give a brief survey of this activity and its achievements so far, and will identify the challenges that lie ahead. As concrete examples, I will discuss recent calculations of certain conservative post-geodesic effects of the self-force, including the \(O(\eta )\) correction to the precession rate of the periastron. I will highlight the way in which such calculations allow us to make a fruitful contact with other approaches to the two-body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hulse, R.A., Taylor, J.H.: Discovery of a pulsar in a binary system. Astrophys. J. 195, L51 (1975). doi:10.1086/181708

    Article  ADS  Google Scholar 

  2. Hahn, S.G., Lindquist, R.W.: The two-body problem in geometrodynamics. Ann. Phys. (N.Y.) 29, 304 (1964). doi:10.1016/0003-4916(64)90223-4

    Google Scholar 

  3. Smarr, L.: Space-time generated by computers: black holes with gravitational radiation. Ann. N.Y. Acad. Sci. 302, 569 (1977). doi:10.1111/j.1749-6632.1977.tb37076.x

    Article  ADS  Google Scholar 

  4. Pretorius, F.: Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). doi:10.1103/PhysRevLett. 95.121101

    Article  ADS  MathSciNet  Google Scholar 

  5. Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). doi:10.1103/PhysRevLett. 96.111101

    Article  ADS  Google Scholar 

  6. Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). doi:10.1103/PhysRevLett. 96.111102

    Article  ADS  Google Scholar 

  7. Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 9, lrr-2006-4 (2006). http://www.livingreviews.org/lrr-2006-4

  8. Einstein, A., Infeld, L., Hoffmann, B.: The gravitational equations and the problem of motion. Ann. Math. 39, 65 (1938). doi:10.2307/1968714

    Article  ADS  MathSciNet  Google Scholar 

  9. Lorentz, H.A.: Theory of Electrons (1915) 2nd ed. Dover, New York (1952)

    Google Scholar 

  10. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A 167, 148 (1938). doi:10.1098/rspa.1938.0124

    Article  ADS  Google Scholar 

  11. DeWitt, B.S., Brehme, R.W.: Radiation damping in a gravitational field. Anna. Phys. 9, 220 (1960). doi:10.1016/0003-4916(60)90030-0

    Google Scholar 

  12. Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987). doi:10.1103/PhysRevD.36.1017

    Article  ADS  MathSciNet  Google Scholar 

  13. LISA Project Office. http://lisa.nasa.gov

  14. Gair, J.R., Barack, L., Creighton, T., et al.: Event rate estimates for lisa extreme mass ratio capture sources. Class. Quantum Grav. 21, S1595 (2004). doi:10.1088/0264-9381/21/20/003

    Article  ADS  MATH  Google Scholar 

  15. Barack, L., Cutler, C.: Using lisa extreme-mass-ratio inspiral sources to test off-kerr deviations in the geometry of massive black holes. Phys. Rev. D 75, 042003 (2007). doi:10.1103/PhysRevD.75.042003

    Article  ADS  Google Scholar 

  16. Mino, Y., Sasaki, M., Tanaka, T.: Gravitational radiation reaction to a particle motion. Phys. Rev. D 55, 3457 (1997). doi:10.1103/PhysRevD.55.3457

    Article  ADS  Google Scholar 

  17. Quinn, T.C., Wald, R.M.: Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime. Phys. Rev. D 56, 3381 (1997). doi:10.1103/PhysRevD.56.3381

    Article  ADS  MathSciNet  Google Scholar 

  18. Blanchet, L., Damour, T.: Hereditary effects in gravitational radiation. Phys. Rev. D 46, 4304 (1992). doi:10.1103/PhysRevD.46.4304

    Article  ADS  MathSciNet  Google Scholar 

  19. Poisson, E., Pound, A., Vega, I.: The motion of point particles in curved spacetime. Living Rev. Relativ. 14(7), lrr-2011-7 (2011). http://www.livingreviews.org/lrr-2011-7

  20. Gralla, E., Wald, R.M.: A rigorous derivation of gravitational self-force. Class. Quantum Grav. 25, 205009 (2008). doi:10.1088/0264-9381/25/20/205009

    Article  ADS  MathSciNet  Google Scholar 

  21. Pound, A.: Self-consistent gravitational self-force. Phys. Rev. D 81, 024023 (2010). doi:10.1103/PhysRevD.81.024023

    Article  ADS  Google Scholar 

  22. Harte, A.I.: Mechanics of extended masses in general relativity. Class. Quantum Grav. 29, 055012 (2012). doi:10.1088/0264-9381/29/5/055012

    Article  ADS  MathSciNet  Google Scholar 

  23. Barack, L., Ori, A.: Gravitational self-force and gauge transformations. Phys. Rev. D 64, 124003 (2001). doi:10.1103/PhysRevD.64.124003

    Article  ADS  MathSciNet  Google Scholar 

  24. Gralla, S.E.: Gauge and averaging in gravitational self-force. Phys. Rev. D 84, 084050 (2011). doi:10.1103/PhysRevD.84.084050

    Article  ADS  Google Scholar 

  25. Pound, A.: Singular perturbation techniques in the gravitational self-force problem. Phys. Rev. D 81, 124009 (2010). doi:10.1103/PhysRevD.81.124009

    Article  ADS  Google Scholar 

  26. Detweiler, S., Whiting, B.F.: Self-force via a green’s function decomposition. Phys. Rev. D 67, 024025 (2003). doi:10.1103/PhysRevD.67.024025

    Article  ADS  MathSciNet  Google Scholar 

  27. Barack, L., Ori, A.: Mode sum regularization approach for the self-force in black hole spacetime. Phys. Rev. D 61, 061502 (2000). doi:10.1103/PhysRevD.61.061502

    Article  ADS  MathSciNet  Google Scholar 

  28. Barack, L.: Gravitational self-force in extreme mass-ratio inspirals. Class. Quantum Grav. 26, 213001 (2009). doi:10.1088/0264-9381/26/21/213001

    Article  ADS  MathSciNet  Google Scholar 

  29. Barack, L., Ori, A.: Gravitational self-force on a particle orbiting a Kerr black hole. Phys. Rev. Lett. 90, 111101 (2003). doi:10.1103/PhysRevLett. 90.111101

  30. Barack, L., Mino, Y., Nakano, H., Ori, A., Sasaki, M.: Calculating the gravitational self-force in Schwarzschild spacetime. Phys. Rev. Lett. 88, 091101 (2002). doi:10.1103/PhysRevLett. 88.091101

  31. Barack, L., Sago, N.: Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole. Phys. Rev. D 75, 064021 (2007). doi:10.1103/PhysRevD.75.064021

  32. Barack, L., Sago, N.: Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole. Phys. Rev. D 81, 084021 (2010). doi:10.1103/PhysRevD.81.084021

  33. Akcay, S.: Fast frequency-domain algorithm for gravitational self-force: circular orbits in Schwarzschild spacetime. Phys. Rev. D 83, 124026 (2011). doi:10.1103/PhysRevD.83.124026

  34. Warburton, N., Akcay, S., Barack, L., Gair, J.R., Sago, N.: Evolution of inspiral orbits around a Schwarzschild black hole. Phys. Rev. D 85, 061501 (2012). doi:10.1103/PhysRevD.85.061501

  35. Warburton, N., Barack, L.: Self-force on a scalar charge in Kerr spacetime: circular equatorial orbits. Phys. Rev. D 81, 084039 (2010). doi:10.1103/PhysRevD.81.084039

  36. Warburton, N., Barack, L.: Self-force on a scalar charge in Kerr spacetime: eccentric equatorial orbits. Phys. Rev. D 83, 124038 (2011). doi:10.1103/PhysRevD.83.124038

  37. Shah, A.G., Friedman, J.L., Keidl, T.S.: Extreme-mass-ratio inspiral corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole. Phys. Rev. D 86, 084059 (2012). doi:10.1103/PhysRevD.86.084059

  38. Heffernan, A., Ottewill, A., Wardell, B.: High-order expansions of the Detweiler-Whiting singular field in Schwarzschild spacetime. Phys. Rev. D 86, 104023 (2012). doi:10.1103/PhysRevD.86.104023

  39. Heffernan, A., Ottewill, A., Wardell, B.: High-order expansions of the Detweiler-Whiting singular field in Kerr spacetime. Phys. Rev. D 89, 024030 (2014). doi:10.1103/PhysRevD.89.024030

  40. Barack, L., Golbourn, D.A.: Scalar-field perturbations from a particle orbiting a black hole using numerical evolution in \(2+1\) dimensions. Phys. Rev. D 76, 044020 (2007). doi: 10.1103/PhysRevD.76.044020

    Article  ADS  MathSciNet  Google Scholar 

  41. Barack, L., Golbourn, D.A., Sago, N.: m-mode regularization scheme for the self-force in Kerr spacetime. Phys. Rev. D 76, 124036 (2007). doi:10.1103/PhysRevD.76.124036

  42. Vega, I., Detweiler, S.: Regularization of fields for self-force problems in curved spacetime: foundations and a time-domain application. Phys. Rev. D 77, 084008 (2008). doi:10.1103/PhysRevD.77.084008

    Article  ADS  MathSciNet  Google Scholar 

  43. Dolan, S.R., Barack, L., Wardell, B.: Self-force via m-mode regularization and \(2+1\)D evolution. II. Scalar-field implementation on Kerr spacetime. Phys. Rev. D 84, 084001 (2011). doi:10.1103/PhysRevD.84.084001

  44. Wardell, B., Vega, I., Thornburg, J., Diener, P.: Generic effective source for scalar self-force calculations. Phys. Rev. D 85, 104044 (2012). doi:10.1103/PhysRevD.85.104044

    Article  ADS  Google Scholar 

  45. Vega, I., Diener, P., Tichy, W., Detweiler, S.: Self-force with (\(3+1\)) codes: a primer for numerical relativists. Phys. Rev. D 80, 084021 (2009). doi: 10.1103/PhysRevD.80.084021

    Article  ADS  Google Scholar 

  46. Dolan, S.R., Barack, L.: Self-force via m -mode regularization and \(2+1\)D evolution: Foundations and a scalar-field implementation on Schwarzschild spacetime. Phys. Rev. D 83, 024019 (2011). doi:10.1103/PhysRevD.83.024019

  47. Dolan, S.R., Barack, L.: Self-force via m-mode regularization and 2+1D evolution: III. Gravitational field on Schwarzschild spacetime, ArXiv e-prints arXiv:1211.4586 [gr-qc] (2012)

  48. Dolan, S., Barack, L.: Self-force via m-mode regularization and 2+1D evolution: IV. Gravitational field on Kerr spacetime. (In preparation)

    Google Scholar 

  49. Diener, P., Vega, I., Wardell, B., Detweiler, S.: Self-consistent orbital evolution of a particle around a Schwarzschild black hole. Phys. Rev. Lett. 108, 191102 (2012). doi:10.1103/PhysRevLett. 108.191102

  50. Cañizares, P., Sopuerta, C.F.: Efficient pseudospectral method for the computation of the self-force on a charged particle: circular geodesics around a Schwarzschild black hole. Phys. Rev. D 79, 084020 (2009). doi:10.1103/PhysRevD.79.084020

  51. Thornburg, J.: Adaptive mesh refinement for characteristic grids. Gen. Rel. Grav. 43, 1211 (2011). doi:10.1007/s10714-010-1096-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Zenginoglu, A.: Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys. 230, 2286 (2011). doi:10.1016/j.jcp.2010.12.016

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Darwin, C.: The gravity field of a particle. Proc. R. Soc. Lond. Ser. A 249, 180 (1959). doi:10.1098/rspa.1959.0015

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Pound, A., Poisson, E.: Multiscale analysis of the electromagnetic self-force in a weak gravitational field. Phys. Rev. D 77, 044012 (2008). doi:10.1103/PhysRevD.77.044012

    Article  ADS  Google Scholar 

  55. Gair, J.R., Flanagan, É., Drasco, S., Hinderer, T., Babak, S.: Forced motion near black holes. Phys. Rev. D 83, 044037 (2011). doi:10.1103/PhysRevD.83.044037

    Article  ADS  Google Scholar 

  56. Detweiler, S.L.: Perspective on gravitational self-force analyses. Class. Quantum Grav. 22, S681 (2005). doi:10.1088/0264-9381/22/15/006

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Detweiler, S.: Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry. Phys. Rev. D 77, 124026 (2008). doi:10.1103/PhysRevD.77.124026

  58. Blanchet, L., Detweiler, S., Le Tiec, A., Whiting, B.F.: Post-newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry. Phys. Rev. D 81(064004), 2010 (2010). doi:10.1103/PhysRevD.81.064004. Erratum: ibid. 81, 084033

  59. Sago, N., Barack, L., Detweiler, S.: Two approaches for the gravitational self-force in black hole spacetime: comparison of numerical results. Phys. Rev. D 78, 124024 (2008). doi:10.1103/PhysRevD.78.124024

    Article  ADS  Google Scholar 

  60. Barack, L., Sago, N.: Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole. Phys. Rev. D 83, 084023 (2011). doi:10.1103/PhysRevD.83.084023

  61. Barack, L., Le Tiec, A., Sago, N.: In progress

    Google Scholar 

  62. Barack, L., Sago, N.: Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole. Phys. Rev. Lett. 102, 191101 (2009). doi:10.1103/PhysRevLett. 102.191101

  63. Akcay, S., Barack, L., Damour, T., Sago, N.: Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring. Phys. Rev. D 86, 104041 (2012). doi:10.1103/PhysRevD.86.104041

    Article  ADS  Google Scholar 

  64. Damour, T.: Gravitational self-force in a Schwarzschild background and the effective one-body formalism. Phys. Rev. D 81, 024017 (2010). doi:10.1103/PhysRevD.81.024017

  65. Barack, L., Lousto, C.O.: Perturbations of Schwarzschild black holes in the Lorenz gauge: formulation and numerical implementation. Phys. Rev. D 72, 104026 (2005). doi:10.1103/PhysRevD.72.104026

  66. Favata, M.: Conservative self-force correction to the innermost stable circular orbit: comparison with multiple post-Newtonian-based methods. Phys. Rev. D 83, 024027 (2011). doi:10.1103/PhysRevD.83.024027

  67. Lousto, C.O., Nakano, H., Zlochower, Y., Campanelli, M.: Statistical studies of spinning black-hole binaries. Phys. Rev. D 81, 084023 (2010). doi:10.1103/PhysRevD.81.084023

    Article  ADS  Google Scholar 

  68. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). doi:10.1103/PhysRevD.59.084006

    Article  ADS  MathSciNet  Google Scholar 

  69. Barack, L., Damour, T., Sago, N.: Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism. Phys. Rev. D 82, 084036 (2010). doi:10.1103/PhysRevD.82.084036

  70. Le Tiec, A., Mroué, A.H., Barack, L., et al.: Periastron advance in black-hole binaries. Phys. Rev. Lett. 107, 141101 (2011). doi:10.1103/PhysRevLett. 107.141101

    Article  ADS  Google Scholar 

  71. Le Tiec, A., Blanchet, L., Whiting, B.F.: First law of binary black hole mechanics in general relativity and post-Newtonian theory. Phys. Rev. D 85, 064039 (2012). doi:10.1103/PhysRevD.85.064039

  72. Barausse, E., Buonanno, A., Le Tiec, A.: Complete nonspinning effective-one-body metric at linear order in the mass ratio. Phys. Rev. D 85, 064010 (2012). doi:10.1103/PhysRevD.85.064010

    Article  ADS  Google Scholar 

  73. Barausse, E., Cardoso, V., Khanna, G.: Testing the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-force. Phys. Rev. D 84, 104006 (2011). doi:10.1103/PhysRevD.84.104006

    Article  ADS  Google Scholar 

  74. Gundlach, C., Akcay, S., Barack, L., Nagar, A.: Critical phenomena at the threshold of immediate merger in binary black hole systems: the extreme mass ratio case. Phys. Rev. D 86, 084022 (2012). doi:10.1103/PhysRevD.86.084022

    Article  ADS  Google Scholar 

  75. Pound, A.: Second-order gravitational self-force. Phys. Rev. Lett. 109, 051101 (2012). doi:10.1103/PhysRevLett. 109.051101

    Article  ADS  Google Scholar 

  76. Pound, A.: Nonlinear gravitational self-force: field outside a small body. Phys. Rev. D 86, 084019 (2012). doi:10.1103/PhysRevD.86.084019

    Article  ADS  Google Scholar 

  77. Gralla, S.E.: Second-order gravitational self-force. Phys. Rev. D 85, 124011 (2012). doi:10.1103/PhysRevD.85.124011

    Article  ADS  Google Scholar 

  78. Hinderer, T., Flanagan, É.: Two-timescale analysis of extreme mass ratio inspirals in Kerr spacetime: orbital motion. Phys. Rev. D 78, 064028 (2008). doi:10.1103/PhysRevD.78.064028

  79. Gair, J., Yunes, N., Bender, C.M.: Resonances in extreme mass-ratio inspirals: asymptotic and hyperasymptotic analysis. J. Math. Phys. 53, 032503 (2012). doi:10.1063/1.3691226

    Article  ADS  MathSciNet  Google Scholar 

  80. Flanagan, É., Hinderer, T.: Transient resonances in the inspirals of point particles into black holes. Phys. Rev. Lett. 109, 071102 (2012). doi:10.1103/PhysRevLett. 109.071102

    Article  ADS  Google Scholar 

  81. Flanagan, É., Hughes, S.A., Ruangsri, U.: Resonantly enhanced and diminished strong-field gravitational-wave fluxes. ArXiv e-prints arXiv:1208.3906 [gr-qc] (2012)

  82. Keidl, T.S., Shah, A.G., Friedman, J.L., Kim, D.H., Price, L.R.: Gravitational self-force in a radiation gauge. Phys. Rev. D 82, 124012 (2010). doi:10.1103/PhysRevD.82.124012

    Article  ADS  Google Scholar 

  83. Shah, A.G., Keidl, T.S., Friedman, J.L., Kim, D.H., Price, L.R.: Conservative, gravitational self-force for a particle in circular orbit around a Schwarzschild black hole in a radiation gauge. Phys. Rev. D 83, 064018 (2011). doi:10.1103/PhysRevD.83.064018

Download references

Acknowledgments

This work was supported by the European Research Council under grant No. 304978; and by STFC in the UK through grant number PP/E001025/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leor Barack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barack, L. (2014). Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_6

Download citation

Publish with us

Policies and ethics