Skip to main content

The General Relativistic Two Body Problem and the Effective One Body Formalism

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

A new analytical approach to the motion and radiation of (comparable mass) binary systems has been introduced in 1999 under the name of Effective One Body (EOB) formalism. We review the basic elements of this formalism, and discuss some of its recent developments. Several recent comparisons between EOB predictions and Numerical Relativity (NR) simulations have shown the aptitude of the EOB formalism to provide accurate descriptions of the dynamics and radiation of various binary systems (comprising black holes or neutron stars) in regimes that are inaccessible to other analytical approaches (such as the last orbits and the merger of comparable mass black holes). In synergy with NR simulations, post-Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the EOB formalism is likely to provide an efficient way of computing the very many accurate template waveforms that are needed for Gravitational Wave (GW) data analysis purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For gravitational waveforms, one conventionally defines the PN accuracy as the fractional PN accuracy with respect to the leading-order, \(O(c^{-5})\), quadrupolar emission. E.g., a \(1\)PN-accurate waveform retains next-to-leading order terms, i.e. terms smaller than the quadrupolar waveform by a factor \(O(c^{-2})\).

  2. 2.

    This is related to an idea emphasized many times by John Archibald Wheeler: quantum mechanics can often help us in going to the essence of classical mechanics.

  3. 3.

    We consider, for simplicity, ‘equatorial’ motions with \(m=\ell \), i.e., classically, \(\theta = \frac{\pi }{2}\).

  4. 4.

    It is convenient to write the ‘effective metric’ in Schwarzschild-like coordinates. Note that the effective radial coordinate \(R\) differs from the two-body ADM-coordinate relative distance \(R^\mathrm{{ADM}} = \vert {\varvec{q}} \vert \). The transformation between the two coordinate systems has been determined in Refs. [57, 59].

  5. 5.

    Indeed \(E_\mathrm{real}^\mathrm{total} = Mc^2 + E_\mathrm{real}^\mathrm{relative} = Mc^2 + \text{ Newtonian } \text{ terms } + \mathrm{1PN} / c^2 + \cdots \), while \({\fancyscript{E}}_\mathrm{effective} = \mu c^2 + N + \mathrm{1PN} / c^2 +\cdots \).

  6. 6.

    The PN-expanded EOB building blocks \(A_{3\mathrm{PN}} (R) , B_{3\mathrm{PN}} (R) , \ldots \) already represent a resummation of the PN dynamics in the sense that they have “condensed” the many terms of the original PN-expanded Hamiltonian within a very concise format. But one should not refrain to further resum the EOB building blocks themselves, if this is physically motivated.

  7. 7.

    We recall that the coefficients \(n_1\) and \((d_1,d_2,d_3)\) of the \((1,3)\) Padé approximant \(P_3^1 [A_\mathrm{3PN} (u)]\) are determined by the condition that the first four terms of the Taylor expansion of \(A_3^1\) in powers of \(u=\textit{GM}/(c^2R)\) coincide with \(A_\mathrm{3PN}\).

  8. 8.

    The new, resummed EOB waveform discussed above was not available at the time, so that these comparisons employed the coarser “Newtonian-level” EOB waveform \(h_{22}^{(N,\varepsilon )} (x)\).

  9. 9.

    The two “pinching” frequencies used for this comparison are \(M\omega _1=0.047\) and \(M\omega _2=0.31\).

  10. 10.

    See Ref. [113], which quoted and used some combinations of the logarithmic contributions to \(a(u)\) and \(\bar{d}(u)\). given in Ref. [119].

  11. 11.

    See [73] for a recent extension of the EOB formalism to non-circular (ellipticlike or hyperboliclike) motions.

References

  1. Damour, T.: The problem of motion in Newtonian and Einsteinian gravity. In: Hawking, S.W., Israel, W. (eds.) Three Hundred Years of Gravitation, pp. 128–198. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  2. Damour, T.: Gravitational radiation and the motion of compact bodies. In: Deruelle, N., Piran, T. (eds.) Gravitational Radiation, pp. 59–144. North-Holland, Amsterdam (1983)

    Google Scholar 

  3. Jaranowski, P., Schäfer, G.: Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems. Phys. Rev. D 57, 7224 (1998). doi:10.1103/PhysRevD.57.7274 [Erratum: ibid. 63, 029902 (2001)]

  4. Blanchet, L., Faye, G.: General relativistic dynamics of compact binaries at the third post-Newtonian order. Phys. Rev. D 63, 062005 (2001). doi:10.1103/PhysRevD.63.062005

    ADS  Google Scholar 

  5. Damour, T., Jaranowski, P., Schäfer, G.: Dimensional regularization of the gravitational interaction of point masses. Phys. Lett. B 513, 147 (2001)

    ADS  MATH  Google Scholar 

  6. Blanchet, L., Damour, T., Esposito-Farèse, G.: Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates. Phys. Rev. D 69, 124007 (2004). doi:10.1103/PhysRevD.69.124007

    ADS  MathSciNet  Google Scholar 

  7. Itoh, Y., Futamase, T.: New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity. Phys. Rev. D 68, 121501 (2003). doi:10.1103/PhysRevD.68.121501

    ADS  Google Scholar 

  8. Pati, M.E., Will, C.M.: Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II: Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newton. Phys. Rev. D 65, 104008 (2002). doi:10.1103/PhysRevD.65.104008

    ADS  MathSciNet  Google Scholar 

  9. Konigsdorffer, C., Faye, G., Schäfer, G.: The binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM-formalism. Phys. Rev. D 68, 044004 (2003). doi:10.1103/PhysRevD.68.044004

    ADS  Google Scholar 

  10. Nissanke, S., Blanchet, L.: Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order. Class. Quantum Gravity 22, 1007 (2005). doi:10.1088/0264-9381/22/6/008

  11. Blanchet, L., Damour, T.: Radiative gravitational fields in general relativity I. General structure of the field outside the source. Philos. Trans. R. Soc. Lond. Ser. A 320, 379 (1986)

    Google Scholar 

  12. Blanchet, L., Damour, T.: Post-Newtonian generation of gravitational waves. Ann. Inst. Henri Poincare A 50, 377 (1989)

    ADS  MATH  MathSciNet  Google Scholar 

  13. Damour, T., Iyer, B.R.: Multipole analysis for electromagnetism and linearized gravity with irreducible cartesian tensors. Phys. Rev. D 43, 3259 (1991). doi:10.1103/PhysRevD.43.3259

    ADS  MathSciNet  Google Scholar 

  14. T. Damour, B.R. Iyer, Post-Newtonian generation of gravitational waves. II. The spin moments. Ann. Inst. Henri Poincare A 54, 115 (1991)

    Google Scholar 

  15. Blanchet, L., Damour, T.: Hereditary effects in gravitational radiation. Phys. Rev. D 46, 4304 (1992). doi:10.1103/PhysRevD.46.4304

    ADS  MathSciNet  Google Scholar 

  16. Blanchet, L.: Second-post-Newtonian generation of gravitational radiation. Phys. Rev. D 51, 2559 (1995). doi:10.1103/PhysRevD.51.2559

    ADS  Google Scholar 

  17. Will, C.M., Wiseman, A.G.: Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order. Phys. Rev. D 54, 4813 (1996). doi:10.1103/PhysRevD.54.4813

    ADS  Google Scholar 

  18. Will, C.M.: Generation of post-Newtonian gravitational radiation via direct integration of the relaxed Einstein equations. Prog. Theor. Phys. Suppl. 136, 158 (1999). doi:10.1143/PTPS.136.158

    ADS  Google Scholar 

  19. Pati, M.E., Will, C.M.: Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. I: Foundations. Phys. Rev. D 62, 124015 (2000). doi:10.1103/PhysRevD.62.124015

    ADS  MathSciNet  Google Scholar 

  20. Epstein, R., Wagoner, R.V.: Post-Newtonian generation of gravitational waves. Astrophys. J. 197, 717 (1975). doi:10.1086/153561

    ADS  MathSciNet  Google Scholar 

  21. Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299 (1980). doi:10.1103/RevModPhys.52.299

    ADS  MathSciNet  Google Scholar 

  22. Wagoner, R.V., Will, C.M.: Post-Newtonian gravitational radiation from orbiting point masses. Astrophys. J. 210, 764 (1976). doi:10.1086/154886

    ADS  Google Scholar 

  23. Wiseman, A.G.: Coalescing binary systems of compact objects to (post)\(^{\frac{5}{2}}\)-Newtonian order. IV. The gravitational wave tail. Phys. Rev. D 48, 4757 (1993). doi:10.1103/PhysRevD.48.4757

  24. Blanchet, L., Schäfer, G.: Gravitational wave tails and binary star systems. Class. Quantum Gravity 10, 2699 (1993). doi:10.1088/0264-9381/10/12/026

    ADS  Google Scholar 

  25. Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., Wiseman, A.G.: Gravitational-radiation damping of compact binary systems to second post-Newtonian order. Phys. Rev. Lett. 74, 3515 (1995). doi:10.1103/PhysRevLett.74.3515

    ADS  Google Scholar 

  26. Blanchet, L., Damour, T., Iyer, B.R.: Gravitational waves from inspiralling compact binaries: energy loss and waveform to second-post-Newtonian order. Phys. Rev. D 51, 5360 (1995). doi:10.1103/PhysRevD.51.5360 [Erratum: ibid. 54, 1860 (1996)]

  27. Blanchet, L.: Gravitational-wave tails of tails, Class. Quantum Gravity 15, 113 (1998). [Erratum ibid. 22, 3381 (2005)]

    Google Scholar 

  28. Blanchet, L., Iyer, B.R., Joguet, B.: Gravitational waves from inspiralling compact binaries: Energy flux to third post-Newtonian order. Phys. Rev. D 65, 064005 (2002). [Erratum: ibid. 71, 129903 (2005)]

    Google Scholar 

  29. Blanchet, L., Iyer, B.R.: Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses. Phys. Rev. D 71, 024004 (2005)

    ADS  Google Scholar 

  30. Blanchet, L., Damour, T., Esposito-Farèse, G., Iyer, B.R.: Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. Phys. Rev. Lett. 93, 091101 (2004). doi:10.1103/PhysRevLett.93.091101

    ADS  Google Scholar 

  31. Blanchet, L., Damour, T., Esposito-Farèse, G., Iyer, B.R.: Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses. Phys. Rev. D 71, 124004 (2005)

    ADS  Google Scholar 

  32. Blanchet, L.: Quadrupole-quadrupole gravitational waves. Class. Quantum Gravity 15, 89 (1998). doi:10.1088/0264-9381/15/1/008

    ADS  MATH  MathSciNet  Google Scholar 

  33. Berti, E., Cardoso, V., Gonzalez, J.A., et al.: Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007). doi:10.1103/PhysRevD.76.064034

    ADS  MathSciNet  Google Scholar 

  34. Kidder, L.E.: Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit. Phys. Rev. D 77, 044016 (2008). doi:10.1103/PhysRevD.77.044016

    ADS  Google Scholar 

  35. Blanchet, L., Faye, G., Iyer, B.R., Sinha, S.: The third post-Newtonian gravitational wave polarisations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits. Class. Quantum Gravity 25, 165003 (2008). doi:10.1088/0264-9381/25/16/165003

    ADS  Google Scholar 

  36. Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 5, lrr-2002-3 (2002). http://www.livingreviews.org/lrr-2002-3

  37. Poisson, E.: Gravitational radiation from a particle in circular orbit around a black hole. I. Analytic results for the nonrotating case. Phys. Rev. D 47, 1497 (1993)

    ADS  MathSciNet  Google Scholar 

  38. Sasaki, M.: Post-Newtonian expansion of the ingoing-wave Regge-Wheeler function. Progress Theoret. Phys. 92, 17 (1994). doi:10.1143/PTP.92.17

    ADS  Google Scholar 

  39. Tagoshi, H., Sasaki, M.: Post-Newtonian expansion of gravitational waves from a particle in circular orbit around a Schwarzschild black hole. Progress Theoret. Phys. 92, 745 (1994). doi:10.1143/PTP.92.745

    ADS  Google Scholar 

  40. Tanaka, T., Tagoshi, H., Sasaki, M.: Gravitational waves by a particle in circular orbit around a Schwarzschild black hole. Progress Theoret. Phys. 96, 1087 (1996). doi:10.1143/PTP.96.1087

    ADS  Google Scholar 

  41. Sasaki, M., Tagoshi, H.: Analytic black hole perturbation approach to gravitational radiation. Living Rev. Relativ. 6, lrr-2003-6 (2003). http://www.livingreviews.org/lrr-2003-6

  42. Foffa, S., Sturani, R.: Effective field theory calculation of conservative binary dynamics at third post-Newtonian order. Phys. Rev. D 84, 044031 (2011). doi:10.1103/PhysRevD.84.044031

    ADS  Google Scholar 

  43. Goldberger, W.D., Rothstein, I.Z.: An effective field theory of gravity for extended objects. Phys. Rev. D 73, 104029 (2006). doi:10.1103/PhysRevD.73.104029

    ADS  MathSciNet  Google Scholar 

  44. Damour, T., Esposito-Farèse, G.: Tensor multiscalar theories of gravitation. Class. Quantum Gravity 9, 2093 (1992). doi:10.1088/0264-9381/9/9/015

    ADS  MATH  Google Scholar 

  45. Damour, T., Esposito-Farèse, G.: Testing gravity to second post-Newtonian order: a field theory approach. Phys. Rev. D 53, 5541 (1996). doi:10.1103/PhysRevD.53.5541

    ADS  MathSciNet  Google Scholar 

  46. Damour, T., Esposito-Farèse, G.: Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D 58, 042001 (1998). doi:10.1103/PhysRevD.58.042001

    ADS  Google Scholar 

  47. Goldberger, W.D., Ross, A.: Gravitational radiative corrections from effective field theory. Phys. Rev. D 81, 124015 (2010). doi:10.1103/PhysRevD.81.124015

    ADS  Google Scholar 

  48. Pretorius, F.: Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005). doi:10.1103/PhysRevLett.95.121101

    ADS  MathSciNet  Google Scholar 

  49. Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006). doi:10.1103/PhysRevLett.96.111101

    ADS  Google Scholar 

  50. Baker, J.G., Centrella, J., Choi, D.I., Koppitz, M., van Meter, J.: Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006). doi:10.1103/PhysRevLett.96.111102

    ADS  Google Scholar 

  51. Boyle, M., Brown, D.A., Kidder, L.E., et al.: High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions. Phys. Rev. D 76, 124038 (2007). doi:10.1103/PhysRevD.76.124038

    ADS  Google Scholar 

  52. Pretorius, F.: Binary black hole coalescence. In: Colpi, M., et al. (eds.) Physics of Relativistic Objects in Compact Binaries: from Birth to Coalescense, Astrophysics and Space Science Library, vol. 359, pp. 305–370. Springer/Canopus, Dordrecht (2009)

    Google Scholar 

  53. Barack, L.: Gravitational self force in extreme mass-ratio inspirals. Class. Quantum Gravity 26, 213001 (2009). doi:10.1088/0264-9381/26/21/213001

    ADS  MathSciNet  Google Scholar 

  54. Hannam, M., Husa, S., Sperhake, U., Bruegmann, B., Gonzalez, J.A.: Where post-Newtonian and numerical-relativity waveforms meet. Phys. Rev. D 77, 044020 (2008)

    ADS  Google Scholar 

  55. Hannam, M., Husa, S., Bruegmann, B., Gopakumar, A.: Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: the orbital hang-up case. Phys. Rev. D 78, 104007 (2008)

    ADS  Google Scholar 

  56. MacDonald, I., Mroué, A.H., Pfeiffer, H.P., et al.: Suitability of hybrid gravitational waveforms for unequal-mass binaries. Phys. Rev. D 87, 024009 (2013). doi:10.1103/PhysRevD.87.024009

    ADS  Google Scholar 

  57. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). doi:10.1103/PhysRevD.59.084006

    ADS  MathSciNet  Google Scholar 

  58. Buonanno, A., Damour, T.: Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000). doi:10.1103/PhysRevD.62.064015

    ADS  Google Scholar 

  59. Damour, T., Jaranowski, P., Schäfer, G.: On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation. Phys. Rev. D 62, 084011 (2000)

    ADS  Google Scholar 

  60. Damour, T.: Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001). doi:10.1103/PhysRevD.64.124013

    ADS  MathSciNet  Google Scholar 

  61. Buonanno, A., Chen, Y., Damour, T.: Transition from inspiral to plunge in precessing binaries of spinning black holes. Phys. Rev. D 74, 104005 (2006). doi:10.1103/PhysRevD.74.104005

    ADS  MathSciNet  Google Scholar 

  62. Brézin, E., Itzykson, C., Zinn-Justin, J.: Relativistic balmer formula including recoil effects. Phys. Rev. D 1, 2349 (1970). doi:10.1103/PhysRevD.1.2349

    ADS  Google Scholar 

  63. Damour, T., Iyer, B.R., Sathyaprakash, B.S.: Improved filters for gravitational waves from inspiralling compact binaries. Phys. Rev. D 57, 885 (1998). doi:10.1103/PhysRevD.57.885

    ADS  Google Scholar 

  64. Damour, T., Iyer, B.R., Nagar, A.: Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries. Phys. Rev. D 79, 064004 (2009). doi:10.1103/PhysRevD.79.064004

    ADS  MathSciNet  Google Scholar 

  65. Damour, T., Nagar, A.: An improved analytical description of inspiralling and coalescing black-hole binaries. Phys. Rev. D 79, 081503 (2009). doi:10.1103/PhysRevD.79.081503

    ADS  MathSciNet  Google Scholar 

  66. Davis, M., Ruffini, R., Tiomno, J.: Pulses of gravitational radiation of a particle falling radially into a Schwarzschild black hole. Phys. Rev. D 5, 2932 (1972). doi:10.1103/PhysRevD.5.2932

    ADS  Google Scholar 

  67. Price, R.H., Pullin, J.: Colliding black holes: the close limit. Phys. Rev. Lett. 72, 3297 (1994). doi:10.1103/PhysRevLett.72.3297

    ADS  MATH  MathSciNet  Google Scholar 

  68. Damour, T., Nagar, A.: Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries. Phys. Rev. D 76, 064028 (2007)

    ADS  MathSciNet  Google Scholar 

  69. Damour, T., Nagar, A.: Comparing effective-one-body gravitational waveforms to accurate numerical data. Phys. Rev. D 77, 024043 (2008)

    ADS  Google Scholar 

  70. Damour, T., Jaranowski, P., Schäfer, G.: Dynamical invariants for general relativistic two-body systems at the third post-Newtonian approximation. Phys. Rev. D 62, 044024 (2000). doi:10.1103/PhysRevD.62.044024

    ADS  Google Scholar 

  71. Damour, T., Jaranowski, P., Schäfer, G.: Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem. Phys. Rev. D 62, 021501 (2000). doi:10.1103/PhysRevD.62.021501 [Erratum: ibid. D 63, 029903 (2000)]

  72. Damour, T., Schäfer, G.: Higher order relativistic periastron advances and binary pulsars. Nuovo Cimento B 101, 127 (1988). doi:10.1007/BF02828697

    ADS  Google Scholar 

  73. Bini, D., Damour, T.: Gravitational radiation reaction along general orbits in the effective one-body formalism. Phys. Rev. D 86, 124012 (2012). doi:10.1103/PhysRevD.86.124012

    ADS  Google Scholar 

  74. Fujita, R., Iyer, B.R.: Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole. Phys. Rev. D 82, 044051 (2010). doi:10.1103/PhysRevD.82.044051

    ADS  Google Scholar 

  75. Fujita, R.: Gravitational radiation for extreme mass ratio inspirals to the 14th post-Newtonian order. Progress Theoret. Phys. 127, 583 (2012). doi:10.1143/PTP.127.583

    ADS  MATH  Google Scholar 

  76. Pan, Y., Buonanno, A., Fujita, R., Racine, E., Tagoshi, H.: Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries. Phys. Rev. D 83, 064003 (2011). doi:10.1103/PhysRevD.83.064003

    ADS  Google Scholar 

  77. Pan, Y., Buonanno, A., Boyle, M., et al.: Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism. Phys. Rev. D 84, 124052 (2011). doi:10.1103/PhysRevD.84.124052

    ADS  Google Scholar 

  78. Taracchini, A., Pan, Y., Buonanno, A., et al.: Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Phys. Rev. D 86, 024011 (2012). doi:10.1103/PhysRevD.86.024011

    ADS  Google Scholar 

  79. Damour, T., Nagar, A., Dorband, E.N., Pollney, D., Rezzolla, L.: Faithful effective-one-body waveforms of equal-mass coalescing black-hole binaries. Phys. Rev. D 77, 084017 (2008). doi:10.1103/PhysRevD.77.084017

    ADS  Google Scholar 

  80. Damour, T., Nagar, A., Hannam, M., Husa, S., Bruegmann, B.: Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Phys. Rev. D 78, 044039 (2008)

    ADS  Google Scholar 

  81. Buonanno, A., Cook, G.B., Pretorius, F.: Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007). doi:10.1103/PhysRevD.75.124018

    ADS  MathSciNet  Google Scholar 

  82. Pan, Y., Buonanno, A., Baker, J.G., et al.: A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case. Phys. Rev. D 77, 024014 (2008). doi:10.1103/PhysRevD.77.024014

    ADS  Google Scholar 

  83. Le Tiec, A., Mroue, A.H., Barack, L., et al.: Periastron advance in black hole binaries. Phys. Rev. Lett. 107, 141101 (2011). doi:10.1103/PhysRevLett.107.141101

    ADS  Google Scholar 

  84. Damour, T., Nagar, A., Pollney, D., Reisswig, C.: Energy versus angular momentum in black hole binaries. Phys. Rev. Lett. 108, 131101 (2012). doi:10.1103/PhysRevLett.108.131101

    ADS  Google Scholar 

  85. Damour, T., Gourgoulhon, E., Grandclément, P.: Circular orbits of corotating binary black holes: comparison between analytical and numerical results. Phys. Rev. D 66, 024007 (2002). doi:10.1103/PhysRevD.66.024007

    ADS  MathSciNet  Google Scholar 

  86. Buonanno, A., Pan, Y., Baker, J.G., et al.: Toward faithful templates for non-spinning binary black holes using the effective-one-body approach. Phys. Rev. D 76, 104049 (2007). doi:10.1103/PhysRevD.76.104049

    ADS  Google Scholar 

  87. Buonanno, A., Pan, Y., Pfeiffer, H.P., et al.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes. Phys. Rev. D 79, 124028 (2009). doi:10.1103/PhysRevD.79.124028

    ADS  Google Scholar 

  88. Bernuzzi, S., Nagar, A., Zenginoglu, A.: Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform. Phys. Rev. D 83, 064010 (2011). doi:10.1103/PhysRevD.83.064010

    ADS  Google Scholar 

  89. Barausse, E., Buonanno, A., Hughes, S.A., et al.: Modeling multipolar gravitational-wave emission from small mass-ratio mergers. Phys. Rev. D 85, 024046 (2012). doi:10.1103/PhysRevD.85.024046

    ADS  Google Scholar 

  90. Damour, T., Gopakumar, A.: Gravitational recoil during binary black hole coalescence using the effective one body approach. Phys. Rev. D 73, 124006 (2006). doi:10.1103/PhysRevD.73.124006

    ADS  Google Scholar 

  91. Bernuzzi, S., Nagar, A., Zenginoglu, A.: Binary black hole coalescence in the large-mass-ratio limit: the hyperboloidal layer method and waveforms at null infinity. Phys. Rev. D 84, 084026 (2011). doi:10.1103/PhysRevD.84.084026

    ADS  Google Scholar 

  92. Damour, T., Nagar, A., Bernuzzi, S.: Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion. ArXiv e-prints arxiv:1212.4357 [gr-qc] (2012)

  93. Damour, T., Nagar, A.: Final spin of a coalescing black-hole binary: an effective-one-body approach. Phys. Rev. D 76, 044003 (2007)

    ADS  MathSciNet  Google Scholar 

  94. Damour, T., Nagar, A., Tartaglia, A.: Binary black hole merger in the extreme mass ratio limit. Class. Quantum Gravity 24, S109 (2007)

    MATH  MathSciNet  Google Scholar 

  95. Gonzalez, J.A., Sperhake, U., Bruegmann, B., Hannam, M., Husa, S.: Total recoil: the maximum kick from nonspinning black-hole binary inspiral. Phys. Rev. Lett. 98, 091101 (2007). doi:10.1103/PhysRevLett.98.091101

    ADS  MathSciNet  Google Scholar 

  96. Yunes, N., Buonanno, A., Hughes, S.A., Miller, M.C., Pan, Y.: Modeling extreme mass ratio inspirals within the effective-one-body approach. Phys. Rev. Lett. 104, 091102 (2010). doi:10.1103/PhysRevLett.104.091102

    ADS  Google Scholar 

  97. Yunes, N., Buonanno, A., Hughes, S.A., et al.: Extreme mass-ratio inspirals in the effective-one-body approach: Quasi-circular, equatorial orbits around a spinning black hole. Phys. Rev. D 83, 044044 (2011). doi:10.1103/PhysRevD.83.044044

    ADS  Google Scholar 

  98. Scheel, M.A., Boyle, M., Chu, T., et al.: High-accuracy waveforms for binary black hole inspiral, merger, and ringdown. Phys. Rev. D 79, 024003 (2009). doi:10.1103/PhysRevD.79.024003

    ADS  Google Scholar 

  99. Damour, T., Nagar, A.: The effective one-body description of the two-body problem. In: Blanchet, L., Spallicci, A., Whiting, B. (eds.) Mass and Motion in General Relativity, Fundamental Theories of Physics, vol. 162, pp. 211–252. Springer, Berlin (2011). doi:10.1007/978-90-481-3015-3_7

  100. Buchman, L.T., Pfeiffer, H.P., Scheel, M.A., Szilágyi, B.: Simulations of non-equal mass black hole binaries with spectral methods. Phys. Rev. D 86, 084033 (2012). doi:10.1103/PhysRevD.86.084033

    ADS  Google Scholar 

  101. Damour, T.: Gravitational self force in a Schwarzschild background and the effective one body formalism. Phys. Rev. D 81, 024017 (2010). doi:10.1103/PhysRevD.81.024017

    ADS  MathSciNet  Google Scholar 

  102. Pan, Y., Buonanno, A., Buchman, L.T., et al.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes. Phys. Rev. D 81, 084041 (2010). doi:10.1103/PhysRevD.81.084041

    ADS  Google Scholar 

  103. Damour, T., Jaranowski, P., Schäfer, G.: Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling. Phys. Rev. D 78, 024009 (2008)

    ADS  Google Scholar 

  104. Barausse, E., Racine, E., Buonanno, A.: Hamiltonian of a spinning test-particle in curved spacetime. Phys. Rev. D 80, 104025 (2009). doi:10.1103/PhysRevD.80.104025 [Erratum: ibid. D 85, 069904 (2012)]

  105. Barausse, E., Buonanno, A.: An improved effective-one-body Hamiltonian for spinning black-hole binaries. Phys. Rev. D 81, 084024 (2010). doi:10.1103/PhysRevD.81.084024

    ADS  Google Scholar 

  106. Nagar, A.: Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling. Phys. Rev. D 84, 084028 (2011). doi:10.1103/PhysRevD.84.084028

    ADS  Google Scholar 

  107. Barausse, E., Buonanno, A.: Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings. Phys. Rev. D 84, 104027 (2011). doi:10.1103/PhysRevD.84.104027

    ADS  Google Scholar 

  108. Damour, T., Nagar, A., Villain, L.: Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals. Phys. Rev. D 85, 123007 (2012). doi:10.1103/PhysRevD.85.123007

    ADS  Google Scholar 

  109. Damour, T., Nagar, A.: Effective one body description of tidal effects in inspiralling compact binaries. Phys. Rev. D 81, 084016 (2010). doi:10.1103/PhysRevD.81.084016

    ADS  Google Scholar 

  110. Bini, D., Damour, T., Faye, G.: Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description. Phys. Rev. D 85, 124034 (2012). doi:10.1103/PhysRevD.85.124034

    ADS  Google Scholar 

  111. Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars. Phys. Rev. Lett. 105, 261101 (2010). doi:10.1103/PhysRevLett.105.261101

    ADS  Google Scholar 

  112. Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A., Rezzolla, L.: Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models. Phys. Rev. D 84, 024017 (2011). doi:10.1103/PhysRevD.84.024017

    ADS  Google Scholar 

  113. Barack, L., Damour, T., Sago, N.: Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism. Phys. Rev. D 82, 084036 (2010). doi:10.1103/PhysRevD.82.084036

    ADS  Google Scholar 

  114. Le Tiec, A., Blanchet, L., Whiting, B.F.: The first law of binary black hole mechanics in general relativity and post-Newtonian theory. Phys. Rev. D 85, 064039 (2012). doi:10.1103/PhysRevD.85.064039

    ADS  Google Scholar 

  115. Le Tiec, A., Barausse, E., Buonanno, A.: Gravitational self-force correction to the binding energy of compact binary systems. Phys. Rev. Lett. 108, 131103 (2012). doi:10.1103/PhysRevLett.108.131103

    ADS  Google Scholar 

  116. Barausse, E., Buonanno, A., Le Tiec, A.: The complete non-spinning effective-one-body metric at linear order in the mass ratio. Phys. Rev. D 85, 064010 (2012). doi:10.1103/PhysRevD.85.064010

    ADS  Google Scholar 

  117. Akcay, S., Barack, L., Damour, T., Sago, N.: Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring. Phys. Rev. D 86, 104041 (2012). doi:10.1103/PhysRevD.86.104041

    ADS  Google Scholar 

  118. Blanchet, L., Detweiler, S.L., Le Tiec, A., Whiting, B.F.: High-order post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry. Phys. Rev. D 81, 084033 (2010). doi:10.1103/PhysRevD.81.084033

    ADS  Google Scholar 

  119. Damour, T.: The 5PN contributions to EOB potentials. (unpublished) (2010)

    Google Scholar 

  120. Foffa, S., Sturani, R.: The dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant. ArXiv e-prints 1206.7087 [gr-qc] (2012)

  121. Jaranowski, P., Schäfer, G.: Towards the 4th post-Newtonian Hamiltonian for two-point-mass systems. Phys. Rev. D 86, 061503 (2012). doi:10.1103/PhysRevD.86.061503

    ADS  Google Scholar 

  122. Faye, G., Marsat, S., Blanchet, L., Iyer, B.R.: The third and a half post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries. Class. Quantum Gravity 29, 175004 (2012). doi:10.1088/0264-9381/29/17/175004

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Damour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Damour, T. (2014). The General Relativistic Two Body Problem and the Effective One Body Formalism. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_5

Download citation

Publish with us

Policies and ethics