Skip to main content

The Astrophysical Signatures of Black Holes: The Horizon, The ISCO, The Ergosphere and The Light Circle

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

  • 2457 Accesses

Abstract

Three advanced instruments planned for a near future (LOFT, GRAVITY, THE EVENT HORIZON TELESCOPE) provide unprecedented angular and time resolutions, which allow to probe regions in the immediate vicinity of black holes. We may soon be able to search for the signatures of the super-strong gravity that is characteristic to black holes: the event horizon, the ergosphere, the innermost stable circular orbit (ISCO), and the photon circle. This review discusses a few fundamental problems concerning these theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The modern history of black holes started thanks to great discoveries of Schwarzschild [1], Chandrasekhar [2] and Oppenheimer [3], and the follow-up work in the 1960s and the 1970s, done mostly by collaborators and students of Dennis W. Sciama in Cambridge (Carter, Ellis, Gibbons, Hawking, Penrose), John A. Wheeler in Princeton (Bekenstein, Ruffini, Thorne) and Yakov B. Zel’dovich in Moscow (Novikov, Starobinsky) and other researchers (e.g. Israel, Damour, Kerr, Kruskal, Wald).

  2. 2.

    Here, and in a few other places, I directly quote a Living Review devoted to the subject: Abramowicz and Fragile, Foundations of Black Hole Accretion Disk Theory.

  3. 3.

    Homepage http://www.mpe.mpg.de/ir/gravity.

  4. 4.

    At http://www.physics.uci.edu/~etolleru/KerrOrbitProject.pdf the Christoffel symbols are given (by Tollerud 2007) in the form of a Mathematica package. Unfortunately, there is an error in the Kerr metric: the \(g_{t\phi }\) metric component is (consistently everywhere) factor of \(2\) too big. See also [6].

  5. 5.

    In this Section I quote extensively from a paper in preparation: Abramowicz, Gourgoulhon, Lasota, Narayan and Tchekhovskoy (2013), Blandford-Znajek mechanism as the Penrose process. Application to Magnetically Arrested Disks.

  6. 6.

    See also [17].

  7. 7.

    In this Section I quote in extenso a few paragraphs from an unfinished draft of an unpublished paper by Abramowicz, Horák and Kluźniak, The MRI in the plunge-in region: the Shakura–Sunyaev ISCO paradigm confirmed, 2013, in preparation.

  8. 8.

    However, [40, 41] and others pointed to some difficulties with the MRI concept and also with its description in the shearing box simulations.

  9. 9.

    But see [55].

  10. 10.

    Based on a lecture by M. Bursa given at the 9 RAGtime Workshop in Opava, 19–21 September, 2007 [61].

References

  1. Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 1, 189 (1916)

    Google Scholar 

  2. Chandrasekhar, S.: The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81 (1931). doi:10.1086/143324

    Article  ADS  MATH  Google Scholar 

  3. Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455 (1939). doi:10.1103/PhysRev.56.455

    Article  ADS  MATH  Google Scholar 

  4. Abramowicz, M.A., Jaroszyński, M., Kato, S., et al.: Leaving the innermost stable circular orbit: the inner edge of a black-hole accretion disk at various luminosities. A&A 521, A15 (2010). doi:10.1051/0004-6361/201014467

  5. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963). doi:10.1103/PhysRevLett.11.237

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dovciak, M.: Radiation of accretion discs in strong gravity. ArXiv e-prints arXiv:astro-ph/0 411605 (2004)

  7. Garcia, M.R., McClintock, J.E., Narayan, R., et al.: New evidence for black hole event horizons from Chandra. Astrophys. J. Letters 553, L47 (2001). doi:10.1086/320494

  8. McClintock, J.E., Narayan, R., Rybicki, G.B.: On the lack of thermal emission from the quiescent black hole XTE J1118+480: Evidence for the event horizon. Astrophys. J. 615, 402 (2004). doi:10.1086/424474

  9. Narayan, R., McClintock, J.E.: Advection-dominated accretion and the black hole event horizon. New Astr. Rev. 51, 733 (2008). doi:10.1016/j.newar.2008.03.002

    Article  ADS  Google Scholar 

  10. Menou, K., Esin, A.A., Narayan, R., et al.: Black hole and neutron star transients in quiescence. Astrophys. J. 520, 276 (1999). doi:10.1086/307443

    Article  ADS  Google Scholar 

  11. Narayan, R.: George Darwin lecture: Evidence for the black hole event horizon. Astron. Geophys. 44(6), 060000 (2003). doi:10.1046/j.1468-4004.2003.44622.x

  12. Abramowicz, M.A., Kluźniak, W., Lasota, J.P.: No observational proof of the black-hole event-horizon. A&A 396, L31 (2002). doi:10.1051/0004-6361:20021645

    Article  ADS  MATH  Google Scholar 

  13. Lemos, J.P.S., Zaslavskii, O.B.: Black hole mimickers: regular versus singular behavior. Phys. Rev. D 78(2), 024040 (2008). doi:10.1103/PhysRevD.78.024040

    Article  ADS  MathSciNet  Google Scholar 

  14. Yuan, F., Quataert, E., Narayan, R.: Nonthermal electrons in radiatively inefficient accretion flow models of sagittarius a*. Astrophys. J. 598, 301 (2003). doi:10.1086/378716

    Article  ADS  Google Scholar 

  15. Broderick, A.E., Narayan, R.: On the nature of the compact dark mass at the galactic center. Astrophys. J. Letters 638, L21 (2006). doi:10.1086/500930

    Article  ADS  Google Scholar 

  16. Penrose, R.: Gravitational collapse: the role of general relativity. Nuovo Cimento Rivista Serie 1, 252 (1969)

    ADS  Google Scholar 

  17. Penrose, R., Floyd, R.M.: Extraction of rotational energy from a black hole. Nat. Phys. Sci. 229, 177 (1971). doi:10.1038/physci229177a0

    Article  ADS  Google Scholar 

  18. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972). doi:10.1086/151796

    Article  ADS  Google Scholar 

  19. Wald, R.M.: Energy limits on the Penrose process. Astrophys. J. 191, 231 (1974). doi:10.1086/152959

  20. Kovetz, A., Piran, T.: The efficiency of the Penrose process. Nuovo Cimento Lettere 12(2), 39–42 (1975)

    Article  ADS  Google Scholar 

  21. Piran, T., Shaham, J.: Upper bounds on collisional Penrose processes near rotating black-hole horizons. Phys. Rev. D 16, 1615 (1977). doi:10.1103/PhysRevD.16.1615

  22. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  23. Bejger, M., Piran, T., Abramowicz, M., Håkanson, F.: Collisional Penrose process near the horizon of extreme Kerr black holes. Phys. Rev. Lett. 109(12), 121101 (2012). doi:10.1103/PhysRevLett.109.121101

  24. Bañados, M., Silk, J., West, S.M.: Kerr black holes as particle accelerators to arbitrarily high energy. Phys. Rev. Lett. 103(11), 111102 (2009). doi:10.1103/PhysRevLett.103.111102

    Article  ADS  Google Scholar 

  25. McWilliams, S.T.: Black holes are neither particle accelerators nor dark matter probes. Phys. Rev. Lett. 110(1), 011102 (2013). doi:10.1103/PhysRevLett.110.011102

    Article  ADS  Google Scholar 

  26. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. Astrophys. J. 711, 50 (2010). doi:10.1088/0004-637X/711/1/50

    Article  ADS  Google Scholar 

  27. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. Roy. astr. Soc. 418, L79 (2011). doi:10.1111/j.1745-3933.2011.01147.x

    Article  ADS  Google Scholar 

  28. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. Roy. astr. Soc. 423, 3083 (2012). doi:10.1111/j.1365-2966.2012.21074.x

    Article  ADS  Google Scholar 

  29. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. Roy. astr. Soc. 179, 433 (1977)

    Google Scholar 

  30. Narayan, R., Igumenshchev, I.V., Abramowicz, M.A.: Magnetically arrested disk: an energetically efficient accretion flow. Pub. Astr. Soc. Jap. 55, L69 (2003)

    ADS  Google Scholar 

  31. Paczyński, B.: The inner boundary condition for a thin disk accreting into a black hole. ArXiv e-prints arXiv:astro-ph/0004129 (2000)

  32. Afshordi, N., Paczyński, B.: Geometrically thin disk accreting into a black hole. Astrophys. J. 592, 354 (2003). doi:10.1086/375559

    Article  ADS  Google Scholar 

  33. Shafee, R., McClintock, J.E., Narayan, R., et al.: Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. Astrophys. J. 636, L113 (2006). doi:10.1086/498938

  34. Straub, O., Bursa, M., Sadowski, A., et al.: Testing slim-disk models on the thermal spectra of LMC X-3. A&A 533, A67 (2011). doi:10.1051/0004-6361/201117385

  35. Krolik, J.H.: Magnetized accretion inside the marginally stable orbit around a black hole. Astrophys. J. 515, L73 (1999). doi:10.1086/311979

  36. Balbus, S.A.: On the behaviour of the magnetorotational instability when the rayleigh criterion is violated. Mon. Not. Roy. astr. Soc. 423, L50 (2012). doi:10.1111/j.1745-3933.2012.01255.x

  37. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. A&A 24, 337 (1973)

    ADS  Google Scholar 

  38. Novikov, I.D., Thorne, K.S.: Astrophysics of black holes. In: Dewitt, C., Dewitt, B.S. (eds.) Black Holes (Les Astres Occlus), pp. 343–450 (1973)

    Google Scholar 

  39. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214 (1991). doi:10.1086/170270

  40. Umurhan, O.M., Menou, K., Regev, O.: Weakly nonlinear analysis of the magnetorotational instability in a model channel flow. Phys. Rev. Lett. 98(3), 034501 (2007). doi:10.1103/PhysRevLett.98.034501

    Article  ADS  Google Scholar 

  41. Regev, O., Umurhan, O.M.: On the viability of the shearing box approximation for numerical studies of mhd turbulence in accretion disks. A&A 481, 21 (2008). doi:10.1051/0004-6361:20078413

    Article  ADS  MATH  Google Scholar 

  42. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1 (1998). doi:10.1103/RevModPhys.70.1

    Article  ADS  Google Scholar 

  43. Balbus, S.A.: Enhanced angular momentum transport in accretion disks. Ann. Rev. Astr. Ap. 41, 555 (2003). doi:10.1146/annurev.astro.41.081401.155207

    Article  ADS  Google Scholar 

  44. Paczynski, B., Bisnovatyi-Kogan, G.: A model of a thin accretion disk around a black hole. Acta Astr. 31, 283 (1981)

    ADS  Google Scholar 

  45. Muchotrzeb, B., Paczynski, B.: Transonic accretion flow in a thin disk around a black hole. Acta Astr. 32, 1 (1982)

    ADS  Google Scholar 

  46. Abramowicz, M.A., Czerny, B., Lasota, J.P., Szuszkiewicz, E.: Slim accretion disks. Astrophys. J. 332, 646 (1988). doi:10.1086/166683

    Article  ADS  Google Scholar 

  47. Sadowski, A., Abramowicz, M., Bursa, M., et al.: Relativistic slim disks with vertical structure. A&A 527, A17 (2011). doi:10.1051/0004-6361/201015256

    Article  ADS  Google Scholar 

  48. Abramowicz, M.A., Zurek, W.H.: Rotation-induced bistability of transonic accretion onto a black hole. Astrophys. J. 246, 314 (1981). doi:10.1086/158924

    Article  ADS  Google Scholar 

  49. Hirose, S., Blaes, O., Krolik, J.H.: Turbulent stresses in local simulations of radiation-dominated accretion disks, and the possibility of the lightman-eardley instability. Astrophys. J. 704, 781 (2009). doi:10.1088/0004-637X/704/1/781

    Article  ADS  Google Scholar 

  50. Hirose, S., Krolik, J.H., Blaes, O.: Radiation-dominated disks are thermally stable. Astrophys. J. 691, 16 (2009). doi:10.1088/0004-637X/691/1/16

    Article  ADS  Google Scholar 

  51. Shafee, R., McKinney, J.C., Narayan, R., et al.: Three-dimensional simulations of magnetized thin accretion disks around black holes: stress in the plunging region. Astrophys. J. 687, L25 (2008). doi:10.1086/593148

    Article  ADS  Google Scholar 

  52. Reynolds, C.S., Fabian, A.C.: Broad iron-K\(\alpha \) emission lines as a diagnostic of black hole spin. Astrophys. J. 675, 1048 (2008). doi:10.1086/527344

  53. Penna, R.F., McKinney, J.C., Narayan, R., et al.: Simulations of magnetized discs around black holes: effects of black hole spin, disc thickness and magnetic field geometry. Mon. Not. Roy. astr. Soc. 408, 752 (2010). doi:10.1111/j.1365-2966.2010.17170.x

  54. Abramowicz, M., Brandenburg, A., Lasota, J.P.: The dependence of the viscosity in accretion discs on the shear/vorticity ratio. Mon. Not. Roy. astr. Soc. 281, L21 (1996)

    Article  ADS  Google Scholar 

  55. R.F. Penna, A. Sadowski, A.K. Kulkarni, R. Narayan, The Shakura-Sunyaev viscosity prescription with variable \(\alpha (r)\), ArXiv e-prints arXiv:1211.0526 [astro-ph.HE] (2012)

  56. Krolik, J.H., Hawley, J.F.: Where is the inner edge of an accretion disk around a black hole? Astrophys. J. 573, 754 (2002). doi:10.1086/340760

    Article  ADS  Google Scholar 

  57. Abramowicz, M.A., Kluźniak, W.: A precise determination of black hole spin in GRO J1655–40. A&A 374, L19 (2001). doi:10.1051/0004-6361:20010791

  58. Strohmayer, T.E.: Discovery of a 450 Hz quasi-periodic oscillation from the microquasar GRO J1655-40 with the Rossi X-ray timing explorer. Aastrophys. J. Letters 552, L49 (2001). doi:10.1086/320258

  59. Barret, D., Kluźniak, W., Olive, J.F., Paltani, S., Skinner, G.K.: On the high coherence of kHz quasi-periodic oscillations. Mon. Not. Roy. astr. Soc. 357, 1288 (2005). doi:10.1111/j.1365-2966.2005.08734.x

  60. Barret, D., Olive, J.F., Miller, M.C.: An abrupt drop in the coherence of the lower kHz quasi-periodic oscillations in 4U 1636–536. Mon. Not. Roy. astr. Soc. 361, 855 (2005). doi:10.1111/j.1365-2966.2005.09214.x

  61. Bursa, M., Abramowicz, M.A., Karas, V., Kluźniak, W., Schwarzenberg-Czerny, A.: The timescale of encircling light. In: Hledík, S., Stuchlík, Z. (eds.) Proceedings of RAGtime 8/9: Workshops on Black Holes and Neutron Stars, pp. 21–25 (2007)

    Google Scholar 

  62. Straub, O., Vincent, F.H., Abramowicz, M.A., Gourgoulhon, E., Paumard, T.: Modelling the black hole silhouette in Sagittarius A* with ion tori. A&A 543, A83 (2012). doi:10.1051/0004-6361/201219209

Download references

Acknowledgments

My work at the Silesian University in Opava was supported by the Czech CZ.1.07/2.3.00/20.0071 “Synergy” grant for international collaboration, and at the Institute of Astronomy in Prague by the Czech ASCR M100031242 grant. I also acknowledge support from the Polish NCN grant UMO-2011/01/B/ST9/05439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek A. Abramowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abramowicz, M.A. (2014). The Astrophysical Signatures of Black Holes: The Horizon, The ISCO, The Ergosphere and The Light Circle. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_24

Download citation

Publish with us

Policies and ethics