Skip to main content

Loop Quantum Gravity and the Planck Regime of Cosmology

  • Chapter
  • First Online:
General Relativity, Cosmology and Astrophysics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 177))

Abstract

The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein’s equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. The genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations in the Planck regime. This report provides a bird’s eye view of these developments for the general relativity community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the BD vacuum refers to deSitter space; it is the unique ‘regular’ state which is invariant under the full deSitter isometry group. During slow roll, the background FLRW geometry is only approximately deSitter whence there is some ambiguity in what one means by the BD vacuum. One typically assumes that all the relevant modes are in the BD state (tailored to) a few e-foldings before the mode \(k_o\) leaves the Hubble horizon. Throughout this report, by BD vacuum I mean this state.

  2. 2.

    The curvature perturbations \(\fancyscript{R}_{\varvec{k}}\) fail to be well-defined at the ‘turning point’ where \(\dot{\phi }=0\), which occurs during pre-inflationary dynamics. However, they are much more convenient for relating the spectrum of perturbations at the end of inflation with the CMB temperature fluctuations. Therefore, we first calculate the power spectrum \(\fancyscript{P}_{\fancyscript{Q}}\) for Mukhanov–Sasaki variable \(\fancyscript{Q}_{\varvec{k}}\) and then convert it to \(\fancyscript{P}_{\fancyscript{R}}\), reported in Fig. 3.

  3. 3.

    During this phase, the scalar field is monotonic in time in the effective trajectory. Therefore we can use the scalar field as an ‘internal’ or ‘relational’ time variable with respect to which the background scale factor (and curvature) as well as perturbations evolve. This interpretation is not essential but very helpful in practice because of the form of the Hamiltonian constraint \(\hat{\mathbb {C}}_o\, \varPsi _o =0\) (for details, see e.g. [14]).

  4. 4.

    Properties of the eigenvalues of length operators [5355] have not been analyzed in comparable detail. But since their definitions involve volume operators, it is expected that there would be no ‘length gap’.

  5. 5.

    Of course, this would not imply that the inflationary scenario does not admit an extension to the Planck regime. But to obtain it one would then have to await the completion of a full quantum gravity theory.

  6. 6.

    For scalar modes, the classical equation of motion involves also ‘an external potential’ \(\mathfrak {A}\). This has also to be replaced by a dressed effective potential \(\tilde{\mathfrak {A}}\). For details, see [12].

  7. 7.

    While this difference is conceptually important, because the states \(\varPsi _o\) of interest are so sharply peaked, in practice the deviations from effective trajectories are small even in the Planck regime. Of course the deviations from classical solutions are enormous in the Planck regime because \(\tilde{g}_{ab}\) is non-singular.

References

  1. Einstein A.: Letter to Arnold Sommerfeld, dated November 28th, 1915, reporting his discovery of general relativity (1915)

    Google Scholar 

  2. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). doi:10.1103/PhysRevLett.96.141301

    Article  ADS  MathSciNet  Google Scholar 

  3. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: An analytical and numerical investigation I. Phys. Rev. D 73, 124038 (2006). doi:10.1103/PhysRevD.73.124038

  4. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ashtekar, A., Corichi, A., Singh, P.: Robustness of predictions of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008). doi:10.1103/PhysRevD.77.024046

    Article  ADS  MathSciNet  Google Scholar 

  6. Pawlowski, T., Ashtekar, A.: Positive cosmological constant in loop quantum cosmology. Phys. Rev. D 85, 064001 (2012). doi:10.1103/PhysRevD.85.064001

    Article  ADS  Google Scholar 

  7. Ashtekar, A., Sloan, D.: Loop quantum cosmology and slow roll inflation. Phys. Lett. B 694, 108 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ashtekar, A., Sloan, D.: Probability of inflation in loop quantum cosmology. Gen. Relativ. Gravit. 43, 3619 (2011). doi:10.1007/s10714-011-1246-y

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Ashtekar, A., Kaminski, W., Lewandowski, J.: Quantum field theory on a cosmological, quantum space-time. Phys. Rev. D 79, 064030 (2009). doi:10.1103/PhysRevD.79.064030

    Article  ADS  Google Scholar 

  10. Agullo, I., Ashtekar, A., Nelson, W.: A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett. 109, 251301 (2012). doi:10.1103/PhysRevLett.109.251301

    Article  ADS  Google Scholar 

  11. Agullo, I., Ashtekar, A., Nelson, W.: An extension of the quantum theory of cosmological perturbations to the Planck era. ArXiv e-prints arXiv:1211.1354 [gr-qc] (2012)

  12. Agullo, I., Ashtekar, A., Nelson, W.: The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations. Class. Quant. Grav. 30, 085014 (2013). doi:10.1088/0264-9381/30/8/085014

  13. Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 8, 11. http://www.livingreviews.org/lrr-2005-11 (2005)

  14. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quantum Grav. 28, 213001 (2011). doi:10.1088/0264-9381/28/21/213001

    Article  ADS  MathSciNet  Google Scholar 

  15. Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  16. Dodelson, S.: Modern Cosmology. Academic Press, Amsterdam (2003)

    Google Scholar 

  17. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  18. Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  19. Gorbunov, D.S., Rubokov, V.A.: Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory. World Scientific, Singapore (2011)

    Book  Google Scholar 

  20. Penrose, R.: Faith, Fashion and Fantasy in the New Physics of the Universe (2003). http://lectures.princeton.edu/2006/roger-penrose/, http://hulk03.princeton.edu:8080/WebMedia/lectures/

  21. Brandenberger, R.H.: Introduction to early universe cosmology. ArXiv e-prints arXiv:1103:2271 [astro-ph.CO], (PoS(ICFI 2010)001) (2011)

  22. Brandenberger, R.H., Martin, J.: Trans-Planckian issues for inflationary cosmology, arXiv:1211.6753

  23. Borde, A., Guth, A., Vilenkin, A.: Inflationary space-times are not past-complete. Phys. Rev. Lett. 90, 151301 (2003). doi:10.1103/PhysRevLett.90.151301

    Article  ADS  Google Scholar 

  24. Hawking, S.W., Ellis, G.F.R.: Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  25. Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011). doi:10.1088/0067-0049/192/2/18

    Article  ADS  Google Scholar 

  26. Holman, R., Tolley, A.: Enhanced non-Gaussianity from excited states. J. Cosmol. Astropart. Phys. 2008(05), 001 (2008). doi:10.1088/1475-7516/2008/05/001

    Article  Google Scholar 

  27. Agullo, I., Parker, L.: Non-gaussianities and the stimulated creation of quanta in the inflationary universe. Phys. Rev. D 83, 063526 (2011a). doi:10.1103/PhysRevD.83.063526

  28. Agullo, I., Parker, L.: Stimulated creation of quanta during inflation and the observable universe Gen. Relativ. Gravit. 43, 2541 (2011b). doi:10.1007/s10714-011-1220-8

  29. Ganc, J.: Calculating the local-type fNL for slow-roll inflation with a non-vacuum initial state. Phys. Rev. D 84, 063514 (2011). doi:10.1103/PhysRevD.84.063514

    Article  ADS  Google Scholar 

  30. Agullo, I., Navarro-Salas, J., Parker, L.: Enhanced local-type inflationary trispectrum from a non-vacuum initial state. J. Cosmol. Astropart. Phys. 2012(05), 019 (2012). doi:10.1088/1475-7516/2012/05/019

    Article  Google Scholar 

  31. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001). doi:10.1103/PhysRevLett.86.5227

    Article  ADS  MathSciNet  Google Scholar 

  32. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003)

    Article  MathSciNet  Google Scholar 

  33. Singh, P.: Are loop quantum cosmologies never singular? Class. Quantum Grav. 26, 125005 (2009). doi:10.1088/0264-9381/26/12/125005

    Article  ADS  Google Scholar 

  34. Ashtekar, A., Pawlowski, T., Singh, P., Vandersloot, K.: Loop quantum cosmology of k=1 FRW models. Phys. Rev. D 75, 0240035 (2006)

    MathSciNet  Google Scholar 

  35. Szulc, L., Kaminski, W., Lewandowski, J.: Closed FRW model in loop quantum cosmology. Class. Quantum Gravity 24, 2621 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Bentivegna, E., Pawlowski, T.: Anti-deSitter universe dynamics in LQC. Phys. Rev. D 77 124025 (2008). doi:10.1103/PhysRevD.77.124025

  37. Kaminski, W., Pawlowski, T.: The LQC evolution operator of FRW universe with positive cosmological constant. Phys. Rev. D 81, 024014 (2010)

    Article  ADS  Google Scholar 

  38. Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi type I models, Phys. Rev. D 79, 083535 (2009). doi: 10.1103/PhysRevD.79.083535

  39. Martin-Benito, M., Mena Marugan, G.A., Pawlowski, T.: Loop quantization of vacuum Bianchi I cosmology. Phys. Rev. D 78, 064008 (2008). doi:10.1103/PhysRevD.78.064008

    Article  ADS  MathSciNet  Google Scholar 

  40. Wilson-Ewing, E.: Loop quantum cosmology of Bianchi type IX models. Phys. Rev. D 82, 043508 (2010). doi:10.1103/PhysRevD.82.043508

    Article  ADS  Google Scholar 

  41. Martin-Benito, M., Garay, L.J., Mena, G.A.: Hybrid quantum Gowdy cosmology: combining loop and Fock quantizations. Phys. Rev. D 78, 083516 (2008). doi:10.1103/PhysRevD.78.083516

    Article  ADS  MathSciNet  Google Scholar 

  42. Garay, L.J., Martn-Benito, M., Mena Marugan, G.A.: Inhomogeneous loop quantum cosmology: Hybrid quantization of the Gowdy model. Phys. Rev. D 82 044048 (2010). doi:10.1103/PhysRevD.82.044048

  43. Brizuela, D., Mena Marugan, G.A., Pawlowski, T.: Big bounce and inhomogeneities. Class. Quantum Grav. 27, 052001 (2010). doi:10.1088/0264-9381/27/5/052001

    Article  ADS  MathSciNet  Google Scholar 

  44. Martin-Benito, M., Mena Marugan, G.A., Wilson-Ewing, E.: Hybrid quantization: from Bianchi I to the Gowdy model. Phys. Rev. D 82, 084012 (2010). doi:10.1103/PhysRevD.82.084012

    Article  ADS  Google Scholar 

  45. Martn-Benito, M., Martin-de Blas, D., Mena Marugan, G.A.: Matter in inhomogeneous loop quantum cosmology: the Gowdy \(T^3\) model. ArXiv e-prints arXiv:1012.2324 [gr-qc] (2010)

  46. Brizuela, D., Mena Marugan, G.A., Pawlowski, T.: Effective dynamics of the hybrid quantization of the Gowdy T3 universe. ArXiv e-prints arXiv:1106.3793 [gr-qc] (2011)

  47. Langlois, D.: Hamiltonian formalism and gauge invariance for linear perturbations in inflation. Class. Quant. Grav. 11, 389 (1994). doi:10.1088/0264-9381/11/2/011

  48. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Grav. 21, R53 (2004). doi:10.1088/0264-9381/21/15/R01

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  50. Thiemann, T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  51. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(593), 1995 (1995). doi:10.1016/0550-3213(95)00150-Q. Erratum: ibid. 456, 753

  52. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry I: area operators. Class. Quantum Grav. 14, A55 (1997). doi:10.1088/0264-9381/14/1A/006

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Thiemann, T.: A length operator for canonical quantum gravity. J. Math. Phys. 39, 3372 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Bianchi, E.: The length operator in loop quantum gravity. Nucl. Phys. B 807, 591 (2009). doi:10.1016/j.nuclphysb.2008.08.013

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Ma, Y., Soo, C., Yang, J.: New length operator for loop quantum gravity. Phys. Rev. D 81, 124026 (2010). doi:10.1103/PhysRevD.81.124026

    Article  ADS  MathSciNet  Google Scholar 

  56. Parker, L.: The creation of particles in an expanding universe. Ph.D. thesis, Harvard University, Harvard (1966)

    Google Scholar 

  57. Parker, L., Fulling, S.A.: Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces. Phys. Rev. D 9, 341 (1974). doi:10.1103/PhysRevD.9.341

    Article  ADS  MathSciNet  Google Scholar 

  58. Birrell, N.D.: The application of adiabatic regularization to calculations of cosmological interest. Proc. R. Soc. Lond. Ser. A 361, 513 (1978)

    Article  ADS  Google Scholar 

  59. Anderson, P.R., Parker, L.: Adiabatic regularization in closed Rebertson–Walker universes. Phys Rev. D 36, 2963 (1987). doi:10.1103/PhysRevD.36.2963

    Article  ADS  MathSciNet  Google Scholar 

  60. Fulling, S.: Aspects of Quantum Field Theory in Curved Space-Times. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  61. Parker, L., Toms, D.: Quantum Field Theory in Curved Space-Time. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  62. Ganc, J., Komatsu, E.: Scale dependent bias of galaxies and \(\mu \)-type disruption of the cosmic microwave background spectrum from a single field inflation with a modified initial state. Phys. Rev. D 86, 023518 (2012). doi: 10.1103/PhysRevD.86.023518

    Article  ADS  Google Scholar 

  63. Agullo, I., Shandera, S.: Large non-Gaussian halo bias from single field inflation. J. Cosmol. Astropart. Phys. 2012(09), 007 (2012). doi:10.1088/1475-7516/2012/09/007

    Article  Google Scholar 

  64. Schmidt, F., Hui, L.: CMB power asymmetry from Gaussian modulation. ArXiv e-prints arXiv:1210.2965 [astro-ph.CO] (2012)

  65. Linsefors, L., Cailleteau, T., Barrau, A., Grain, J.: Primordial tensor power spectrum in holonomy corrected Omega-LQC. ArXiv e-prints arXiv:1212.2852 [gr-qc] (2012)

  66. Fernandez-Mendez, M., Mena Marugan, G.A., Olmedo, J.: Hybrid quantization of an inflationary universe. Phys. Rev. D 86, 024003 (2012). doi:10.1103/PhysRevD.86.024003

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This report is based on joint work with Ivan Agullo, Alejandro Corichi, Wojciech Kaminski, Jerzy Lewandowski, William Nelson, Tomasz Pawlowski, Parampreet Singh and David Sloan over the past six years. I am most grateful for this collaboration. I am also indebted to a very large number of colleagues especially in the LQG community for discussions, comments, questions and criticisms. This work was supported by the NSF grant PHY-1205388 and the Eberly research funds of Penn state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Ashtekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashtekar, A. (2014). Loop Quantum Gravity and the Planck Regime of Cosmology. In: Bičák, J., Ledvinka, T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-06349-2_16

Download citation

Publish with us

Policies and ethics