We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Aspects of Quantum Chaos

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Nonlinear Dynamics and Quantum Chaos

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 3674 Accesses

Abstract

This chapter discusses two important ways of defining quantum chaoticity. One access to characterize dynamical quantum systems is offered by the powerful approach of semiclassics. Here we compare the properties of the quantum system with its classical analogue, and we combine classical intuition with quantum evolution. The second approach starts from the very heart of quantum mechanics, from the quantum spectrum and its properties. Classical and quantum localization mechanisms are presented, again originating either from the classical dynamics of the corresponding problem and semiclassical explanations, or from the quantum spectra and the superposition principle. The essential ideas of the theory of random matrices are introduced. This second way of characterizing a quantum system by its spectrum is reconciled with the first approach by the conjectures of Berry and Tabor and Bohigas, Giannoni, and Schmit, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This relation between the hermitian operator \(\hat{H}\) and the unitary \(\hat{U}\) is due to a theorem of Stone [4]. We assume \(\hat{H}\) was time-independent, otherwise time-ordering must be used.

  2. 2.

    The validity of this approximation is similar to the conditions discussed at the beginning of Sect. 4.2.2.

  3. 3.

    They had to be treated separately in the WKB approximation. There, this was achieved by using the Airy functions close to the turning point.

  4. 4.

    Following [20].

  5. 5.

    A similar relation was actually shown in Sect. 4.2.4. Here one starts from the infinitesimal action \(R(\mathbf{r }',\mathbf{r })= \frac{m}{2 \delta t}(\mathbf{r }'-\mathbf{r })^2-\delta t V(\mathbf{r }')\) with momentum \(p = \frac{\mathbf{r }'-\mathbf{r }}{\delta t}\), and shows that \(\frac{\delta t}{m}\frac{\partial \mathbf{r }'}{\partial \mathbf{r }}|_{\mathbf{r }=\mathbf r' } = \frac{\partial \mathbf{r }'}{\partial \mathbf p }|_\mathbf{p (\mathbf{r }=\mathbf r' )}\), which in turn is the inverse of the matrix \(- \frac{\partial R}{\partial \mathbf{r }' \partial \mathbf{r }}\).

  6. 6.

    Please remember the phase convention right after Eq. (4.3.25).

  7. 7.

    In the notation of Sect. 3.8.4, the exponents are called \(\sigma \), see Eq. 3.8.36).

  8. 8.

    The unfolding from Eq. (4.3.125) makes the unit of time 1 corresponding to the inverse level spacing in dimensionless units. Hence only for energies larger than the inverse level spacing we can expect good correspondence.

  9. 9.

    We assume that the integral in the definition of the Weyl symbol and the time-derivative can be interchanged.

  10. 10.

    Please see the asymptotic expansion with number [9.3.1] in Chap. 9 of [13].

  11. 11.

    The notion dynamic or dynamical localization is unfortunately also used in different contexts, one example being the suppression of tunneling by a periodic driving force [81], for experimental realizations of this latter effect see, e.g., [82, 83].

  12. 12.

    A short overview over possible spectra of a quantum system is found in the appendix of this chapter.

  13. 13.

    To make the statement as clear as possible we abuse the notation here a bit.

References

  1. Schwabl, F.: Quantum Mechanics. Springer, Berlin (2005)

    Google Scholar 

  2. Landau, L.D., Lifschitz, E.M.: Course in Theoretical Physics III, Quantum Mechanics: Non-Relativistic Theory. Pergamon Press, Oxford (1994)

    Google Scholar 

  3. Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley Publishing Company, Reading (1994)

    Google Scholar 

  4. Reed, M.C., Simon, B.: Methods of Modern Mathematical Physics I: Functional analysis. Academic Press, San Diego (1972)

    MATH  Google Scholar 

  5. Peres, A.: Phys. Rev. A 30, 1610 (1984)

    ADS  MathSciNet  Google Scholar 

  6. Gorin, T., Prosen, T., Seligman, T.H., Ẑnidaric, M.: Phys. Rep. 435, 33 (2006)

    ADS  Google Scholar 

  7. Jacquod, P., Petitjean, C.: Adv. Phys. 58(2), 67 (2009)

    ADS  Google Scholar 

  8. Berry, M.V.: Proc. R. Soc. Lond. A: Math. Phys. Sci. 413(1844), 183 (1987)

    ADS  Google Scholar 

  9. Berry, M.V.: Phys. Scr. 40(3), 335 (1989)

    ADS  MATH  Google Scholar 

  10. Einstein, A.: Verh. Dt. Phys. Ges. 19, 82 (1917)

    Google Scholar 

  11. Poincaré, H.: Les Méthodes nouvelles de la méchanique céleste. Gauthier-Villars, Paris (1899)

    Google Scholar 

  12. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Google Scholar 

  13. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  14. Maslov, V., Fedoriuk, M.: Semi-Classical Approximations in Quantum Mechanics. Reidel, Dordrecht (1981)

    Google Scholar 

  15. Landau, L.D., Lifschitz, E.M.: Course in Theoretical Physics I, Mechanics. Pergamon Press, Oxford (1960)

    Google Scholar 

  16. Bayfield, J.E.: Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics. Wiley, New York (1999)

    Google Scholar 

  17. Ozorio de Almeida, A.M.: Hamiltonian Systems: Chaos and Quantization. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  18. Vleck, J.H.V.: Proc. Natl. Acad. Sci. USA 14, 178 (1928)

    Google Scholar 

  19. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  20. Haake, F.: Quantum Signatures of Chaos (Springer Series in Synergetics). Springer, Berlin (2010)

    Google Scholar 

  21. Rebhan, E.: Theoretische Physik: Mechanik. Spektrum Akademischer Verlag, Heidelberg (2006)

    Google Scholar 

  22. Feynman, R.P.: Rev. Mod. Phys. 20, 367 (1948)

    ADS  MathSciNet  Google Scholar 

  23. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  24. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2001)

    Google Scholar 

  25. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    MATH  Google Scholar 

  26. Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Prentiss Hall, New York (2003)

    Google Scholar 

  27. Brack, M., Bhaduri, R.K.: Semiclassical Physics. Westview Press, Oxford (2003)

    MATH  Google Scholar 

  28. Stöckmann, H.J.: Quantum Chaos, An Introduction, 1st edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  29. Stöckmann, H.J., Stein, J.: Phys. Rev. Lett. 64, 2215 (1990)

    ADS  Google Scholar 

  30. Garton, W.R.S., Tomkins, F.S.: Astrophys. J. 158, 839 (1969)

    ADS  Google Scholar 

  31. Holle, A., Main, J., Wiebusch, G., Rottke, H., Welge, K.H.: Phys. Rev. Lett. 61(2), 161 (1988)

    ADS  Google Scholar 

  32. Wintgen, D.: Phys. Rev. Lett. 58, 1589 (1987)

    ADS  Google Scholar 

  33. Wintgen, D.: Phys. Rev. Lett. 61, 1803 (1988)

    ADS  MathSciNet  Google Scholar 

  34. Friedrich, H., Wintgen, D.: Phys. Rep. 183, 37 (1989)

    ADS  MathSciNet  Google Scholar 

  35. Delande, D., Gay, J.C.: Phys. Rev. Lett. 57(16), 2006 (1986)

    ADS  Google Scholar 

  36. Delande, D.: Les Houches lectures, 1989. In: Giannoni, M.J., Voros, A., Zinn-Justin, J. (eds.) Chaos and Quantum physics, vol. 52, pp. 665. North-Holland, Amsterdam (1991)

    Google Scholar 

  37. Sieber, M., Richter, K.: Phys. Scr. 2001(T90), 128 (2001)

    Google Scholar 

  38. Heusler, S., Müller, S., Altland, A., Braun, P., Haake, F.: Phys. Rev. Lett. 98, 044103 (2007)

    ADS  Google Scholar 

  39. Müller, S., Heusler, S., Altland, A., Braun, P., Haake, F.: New J. Phys. 11(10), 103025 (2009)

    Google Scholar 

  40. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2012). http://ChaosBook.org

  41. Ruelle, D.: The Thermodynamic Formalism. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  42. Breuer, P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  43. Wong, M.W.: Weyl Transforms. Springer, Heidelberg (1997)

    Google Scholar 

  44. Gardiner, C.: Quantum Noise. Phase Space Methods (Chap. 4). Springer, Berlin, (1998)

    Google Scholar 

  45. Kordas, G., Wimberger, S., Witthaut, D.: Phys. Rev. A 87, 043618 (2013) (See Appendix B)

    Google Scholar 

  46. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2008)

    MATH  Google Scholar 

  47. Buchleitner, A., Delande, D., Zakrzewski, J.: Phys. Rep. 368(5), 409 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  48. Keshavamurthy, S., Schlagheck, P. (eds.): Dynamical Tunneling: Theory and Experiment. CRC Press, Taylor and Francis Group, Boca Raton (2011)

    Google Scholar 

  49. Maeda, H., Gallagher, T.F.: Phys. Rev. Lett. 92, 133004 (2004)

    ADS  Google Scholar 

  50. Maeda, H., Gurian, J.H., Gallagher, T.F.: Phys. Rev. Lett. 102, 103001 (2009)

    ADS  Google Scholar 

  51. Mestayer, J.J., Wyker, B., Lancaster, J.C., Dunning, F.B., Reinhold, C.O., Yoshida, S., Burgdörfer, J.: Phys. Rev. Lett. 100, 243004 (2008)

    ADS  Google Scholar 

  52. Behinaein, G., Ramareddy, V., Ahmadi, P., Summy, G.S.: Phys. Rev. Lett. 97, 244101 (2006)

    ADS  Google Scholar 

  53. Shrestha, R.K., Ni, J., Lam, W.K., Summy, G.S., Wimberger, S.: Phys. Rev. E 88, 034901 (2013)

    ADS  Google Scholar 

  54. Sadgrove, M., Wimberger, S.: Chapter 7—a pseudoclassical method for the atom-optics kicked rotor: from theory to experiment and back. In: Berman, P.R., Arimondo, E., Lin, C.C. (eds.) Advances in Atomic, Molecular, and Optical Physics, Advances In Atomic, Molecular, and Optical Physics, vol. 60, pp. 315–369. Academic Press, New York (2011)

    Google Scholar 

  55. Heller, E.J.: Phys. Rev. Lett. 53, 1515 (1984)

    ADS  MathSciNet  Google Scholar 

  56. Sridhar, S.: Phys. Rev. Lett. 67, 785 (1991)

    ADS  Google Scholar 

  57. Stein, J., Stöckmann, H.J.: Phys. Rev. Lett. 68, 2867 (1992)

    ADS  Google Scholar 

  58. Sridhar, S., Heller, E.J.: Phys. Rev. A 46, R1728 (1992)

    ADS  Google Scholar 

  59. Doya, V., Legrand, O., Mortessagne, F., Miniatura, C.: Phys. Rev. Lett. 88, 014102 (2001)

    ADS  Google Scholar 

  60. de Menezes, D.D., Jar e Silva, M., de Aguiar, F.M.: Chaos 17(2), 023116 (2007)

    Google Scholar 

  61. Anderson, P.W.: Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  62. Anderson, P.W.: Rev. Mod. Phys. 50, 191 (1978)

    ADS  Google Scholar 

  63. Fishman, S., Grempel, D.R., Prange, R.E.: Phys. Rev. Lett. 49, 509 (1982)

    ADS  MathSciNet  Google Scholar 

  64. Casati, G., Chirikov, V., Shepelyansky, D.L., Guarneri, I.: Phys. Rep. 154(2), 77 (1987)

    ADS  Google Scholar 

  65. Kramers, B., MacKinnon, A.: Rep. Prog. Phys. 56, 1469 (1993)

    ADS  Google Scholar 

  66. Kohn, W.: Phys. Rev. B 7, 4388 (1973)

    ADS  MathSciNet  Google Scholar 

  67. Wannier, G.H.: Phys. Rev. 117, 432 (1960)

    ADS  MATH  MathSciNet  Google Scholar 

  68. Nolting, W.: Grundkurs Theoretische Physik 7: Vielteilchentheorie. Springer, Berlin (2005)

    Google Scholar 

  69. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  70. Casati, G., Guarneri, I., Shepelyansky, D.L.: Phys. Rev. Lett. 62, 345 (1989)

    ADS  Google Scholar 

  71. Ho, T.S., Chu, S.I.: Phys. Rev. A 31, 659 (1985)

    ADS  Google Scholar 

  72. Ringot, J., Szriftgiser, P., Garreau, J.C., Delande, D.: Phys. Rev. Lett. 85, 2741 (2000)

    ADS  Google Scholar 

  73. Brenner, N., Fishman, S.: J. Phys. A: Math. Gen. 28(21), 5973 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  74. Buchleitner, A., Guarneri, I., Zakrzewski, J.: Europhys. Lett. 44(2), 162 (1998)

    ADS  Google Scholar 

  75. Jensen, R., Susskind, S., Sanders, M.: Phys. Rep. 201(1), 1 (1991)

    ADS  Google Scholar 

  76. Wimberger, S., Buchleitner, A.: J. Phys. A: Math. Gen. 34(36), 7181 (2001)

    ADS  MATH  Google Scholar 

  77. Krug, A., Wimberger, S., Buchleitner, A.: Eur. Phys. J. D 26(1), 21 (2003)

    ADS  Google Scholar 

  78. Fishman, S., Prange, R.E., Griniasty, M.: Phys. Rev. A 39(4), 1628 (1989)

    ADS  Google Scholar 

  79. Izrailev, F.M.: Phys. Rep. 196(56), 299–392 (1990)

    ADS  MathSciNet  Google Scholar 

  80. Shepelyansky, D.: Physica D 28, 103 (1987)

    ADS  Google Scholar 

  81. Dunlap, D.H., Kenkre, V.M.: Phys. Rev. B 34, 3625 (1986)

    ADS  Google Scholar 

  82. Lignier, H., Sias, C., Ciampini, D., Singh, Y., Zenesini, A., Morsch, O., Arimondo, E.: Phys. Rev. Lett. 99, 220403 (2007)

    ADS  Google Scholar 

  83. Kierig, E., Schnorrberger, U., Schietinger, A., Tomkovic, J., Oberthaler, M.K.: Phys. Rev. Lett. 100, 190405 (2008)

    ADS  Google Scholar 

  84. Casati, G., Chirikov, B.V., Ford, J., Izrailev, F.M.: Stochastic behavior in classical and quantum hamiltonian systems. In: Casati, G., Ford, J. (eds.) Lecture Notes in Physics, vol. 93, p. 334. Springer, Berlin (1979)

    Google Scholar 

  85. Feingold, M., Fishman, S., Grempel, D.R., Prange, R.E.: Phys. Rev. B 31, 6852 (1985)

    ADS  Google Scholar 

  86. Pichard, J.L., Zanon, N., Imry, Y., Douglas Stone, A.: J. Phys. France 51(7), 587–609 (1990)

    Google Scholar 

  87. Bayfield, J.E., Casati, G., Guarneri, I., Sokol, D.W.: Phys. Rev. Lett. 63, 364 (1989)

    ADS  Google Scholar 

  88. Galvez, E.J., Sauer, J.E., Moorman, L., Koch, P.M., Richards, D.: Phys. Rev. Lett. 61, 2011 (1988)

    ADS  Google Scholar 

  89. Koch, P., van Leeuwen, K.: Phys. Rep. 255, 289 (1995)

    ADS  Google Scholar 

  90. Casati, G., Chirikov, B.V., Shepelyansky, D.L.: Phys. Rev. Lett. 53, 2525 (1984)

    ADS  Google Scholar 

  91. Casati, G., Guarneri, I., Shepelyansky, D.L.: IEEE J. Quantum Electron. 24, 1420 (1988)

    ADS  Google Scholar 

  92. Raizen, M.G.: Adv. At. Mol. Phys. 41, 43 (1999)

    ADS  Google Scholar 

  93. Bharucha, C.F., Robinson, J.C., Moore, F.L., Sundaram, B., Niu, Q., Raizen, M.G.: Phys. Rev. E 60, 3881 (1999)

    ADS  Google Scholar 

  94. Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Nature 446, 52 (2007)

    ADS  Google Scholar 

  95. Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B., Lugan, P., Clement, D., Sanchez-Palencia, L., Bouyer, P., Aspect, A.: Nature (London) 453, 891 (2008)

    ADS  Google Scholar 

  96. Mehta, M.L.: Random Matrices. Academic Press, New York (1991)

    MATH  Google Scholar 

  97. Mehta, M.L.: Random Matrices. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  98. Porter, C.E. (ed.): Statistical Theories of Spectra: Fluctuations. Academic, New York (1965)

    Google Scholar 

  99. Bohr, N.: Nature (London) 137, 351 (1936)

    Google Scholar 

  100. Bohigas, O., Giannoni, M.J., Schmit, C.: Phys. Rev. Lett. 52, 1 (1984)

    ADS  MATH  MathSciNet  Google Scholar 

  101. Aurich, R., Scheffler, F., Steiner, F.: Phys. Rev. E 51, 4173 (1995)

    ADS  Google Scholar 

  102. Gómez, J.M.G., Molina, R.A., Relaño, A., Retamosa, J.: Phys. Rev. E 66, 036209 (2002)

    ADS  Google Scholar 

  103. Haller, E., Köppel, H., Cederbaum, L.: Chem. Phys. Lett. 101(3), 215–220 (1983)

    Google Scholar 

  104. Venkataraman, R.: J. Phys. B: At. Mol. Phys. 15(23), 4293 (1982)

    ADS  Google Scholar 

  105. Berry, M.V., Tabor, M.: Proc. R. Soc. Lond. A 356, 375 (1977)

    ADS  MATH  Google Scholar 

  106. Casati, G., Chirikov, B.V., Guarneri, I.: Phys. Rev. Lett. 54, 1350 (1985)

    ADS  MathSciNet  Google Scholar 

  107. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., Wong, S.S.M.: Rev. Mod. Phys. 53, 385 (1981)

    ADS  MathSciNet  Google Scholar 

  108. Guhr, T., Müller-Gröling, A.: Phys. Rep. 299(4–6), 189 (1998)

    Google Scholar 

  109. Casati, G., Valz-Gris, F., Guarneri, I.: Lett. Nuovo Cimento 28, 279 (1980)

    MathSciNet  Google Scholar 

  110. McDonald, S.W., Kaufman, A.N.: Phys. Rev. Lett. 42, 1189 (1979)

    ADS  Google Scholar 

  111. Berry, M.: Ann. Phys. 131(1), 163–216 (1981)

    ADS  Google Scholar 

  112. Schwabl, F.: Advanced Quantum Mechanics. Springer, Berlin (2008)

    Google Scholar 

  113. Bloch, I., Dalibard, J., Zwerger, W.: Rev. Mod. Phys. 80, 885 (2008)

    ADS  Google Scholar 

  114. Tomadin, A., Mannella, R., Wimberger, S.: Phys. Rev. Lett. 98, 130402 (2007)

    ADS  Google Scholar 

  115. Berry, M.V., Robnik, M.: J. Phys. A 17, 2413 (1984)

    ADS  MATH  MathSciNet  Google Scholar 

  116. Parra-Murillo, C.A., Madroñero, J., Wimberger, S.: Phys. Rev. A 88, 032119 (2013)

    ADS  Google Scholar 

  117. Beenakker, C.W.J.: Rev. Mod. Phys. 69, 731 (1997)

    ADS  Google Scholar 

  118. Evers, F., Mirlin, A.D.: Rev. Mod. Phys. 80, 1355 (2008)

    ADS  Google Scholar 

  119. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Phys. Rev. E 65, 066126 (2002)

    ADS  Google Scholar 

  120. Weidenmüller, H.A., Mitchell, G.E.: Rev. Mod. Phys. 81, 539 (2009)

    ADS  Google Scholar 

  121. Mitchell, G.E., Richter, A., Weidenmüller, H.A.: Rev. Mod. Phys. 82, 2845 (2010)

    ADS  MATH  Google Scholar 

  122. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, Berlin (1992)

    MATH  Google Scholar 

  123. Bohigas, O., Tomsovic, S., Ullmo, D.: Phys. Rep. 223, 43 (1993)

    ADS  MathSciNet  Google Scholar 

  124. Tomsovic, S., Ullmo, D.: Phys. Rev. E 50, 145 (1994)

    ADS  Google Scholar 

  125. Steck, D.A., Oskay, W.H., Raizen, M.G.: Science 293, 274 (2001)

    ADS  Google Scholar 

  126. Hensinger, W.K., et al.: Nature (London) 412, 52 (2001)

    ADS  Google Scholar 

  127. Hofferbert, R., Alt, H., Dembowski, C., Gräf, H.D., Harney, H.L., Heine, A., Rehfeld, H., Richter, A.: Phys. Rev. E 71, 046201 (2005)

    ADS  Google Scholar 

  128. Bäcker, A., Ketzmerick, R., Löck, S., Robnik, M., Vidmar, G., Höhmann, R., Kuhl, U., Stöckmann, H.J.: Phys. Rev. Lett. 100, 174103 (2008)

    ADS  Google Scholar 

  129. Chaudhury, S., Smith, A., Anderson, B.E., Ghose, S., Jessen, P.S.: Nature (London) 461, 768 (2009)

    ADS  Google Scholar 

  130. Shinohara, S., Harayama, T., Fukushima, T., Hentschel, M., Sasaki, T., Narimanov, E.E.: Phys. Rev. Lett. 104, 163902 (2010)

    ADS  Google Scholar 

  131. Bayfield, J.E., Koch, P.M.: Phys. Rev. Lett. 33, 258 (1974)

    ADS  Google Scholar 

  132. Domke, M., Schulz, K., Remmers, G., Kaindl, G., Wintgen, D.: Phys. Rev. A 53, 1424 (1996)

    ADS  Google Scholar 

  133. Jiang, Y.H., Püttner, R., Delande, D., Martins, M., Kaindl, G.: Phys. Rev. A 78, 021401 (2008)

    ADS  Google Scholar 

  134. Eiglsperger, J., Madroñero, J.: Phys. Rev. A 82, 033422 (2010)

    ADS  Google Scholar 

  135. Jörder, F., Zimmermann, K., Rodriguez, A., Buchleitner, A.: ArXiv e-prints (2013)

    Google Scholar 

  136. Tanner, G., Richter, K., Rost, J.M.: Rev. Mod. Phys. 72, 497 (2000)

    ADS  Google Scholar 

  137. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  138. Gaspard, P.: Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  139. Guarneri, I., Mantica, G.: Phys. Rev. Lett. 73, 3379 (1994)

    ADS  Google Scholar 

  140. Jitomirskaya, S.Y., Last, Y.: Phys. Rev. Lett. 76, 1765 (1996)

    ADS  MathSciNet  Google Scholar 

  141. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  142. Landau, L.D.: Phys. Z. Sowjetunion 2, 46 (1932)

    Google Scholar 

  143. Zener, C.: Proc. R. Soc. Lond. A 137(833), 696 (1932)

    Google Scholar 

  144. Majorana, E.: Il Nuovo Cimento 9(2), 43 (1932)

    Google Scholar 

  145. Stückelberg, E.C.G.: Helv. Phys. Acta 5, 369 (1932)

    Google Scholar 

  146. Wittig, C.: J. Phys. Chem. B 109, 8428 (2005)

    Google Scholar 

  147. Chichinin, A.I.: J. Phys. Chem. B 117, 6018 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Wimberger .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wimberger, S. (2014). Aspects of Quantum Chaos. In: Nonlinear Dynamics and Quantum Chaos. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06343-0_4

Download citation

Publish with us

Policies and ethics