Skip to main content

Block-Diagonalization Precoding in Multiuser Multicell MIMO Systems

  • Chapter
  • First Online:
Wireless Coordinated Multicell Systems

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 594 Accesses

Abstract

This chapter investigates a multiuser multicell system where block-diagonalization (BD) precoding is utilized on a per-cell basis under two operating modes: competition and coordination. In the competition mode, the precoding design in the multicell system can be considered a strategic non-cooperative game (SNG), where each base-station (BS) greedily determines its BD precoding strategy in a distributed manner, based on the knowledge of the inter-cell interference at its connected mobile-stations (MS). Via the game-theory framework, the existence and uniqueness of a Nash equilibrium in this SNG are subsequently studied. In the coordination mode, the BD precoders are jointly designed across the multiple BSs to maximize the network weighted sum-rate (WSR). Since this WSR maximization problem is nonconvex, this chapter proposes a distributed algorithm to obtain at least a locally optimal solution. Finally, the analysis of the multicell BD precoding is extended to to the case of BD-Dirty Paper Coding (BD-DPC) precoding. Simulation results show significant network sum-rate improvements by jointly designing the BD or BD-DPC precoders across the multicell system in the coordination mode over the competition mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To optimize the DPC in a multicell system under the IC mode, the numerical algorithm presented in Chap. 7 is utilized.

References

  1. An, L.: D.C. programming for solving a class of global optimization problems via reformulation by exact penalty. In: C. Bliek, C. Jermann, A. Neumaier (eds.) Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science, vol. 2861, pp. 87–101. Springer Berlin / Heidelberg (2003)

    Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, New Jersey (1989)

    MATH  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, United Kingdom (2004)

    Book  MATH  Google Scholar 

  4. Caire, G., Shamai, S.: On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inform. Theory 49(7), 1691–1706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Choi, L.U., Murch, R.: A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Trans. Wireless Commun. 3(1), 20–24 (2004)

    Article  Google Scholar 

  6. Costa, M.: Writing on dirty paper. IEEE Trans. Inform. Theory 29(3), 439–441 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dubey, P.: Inefficiency of Nash equilibria. Math. Oper. Res. 11(1), 1–8 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)

    Book  MATH  Google Scholar 

  9. Kim, S.J., Giannakis, G.B.: Optimal resource allocation for MIMO ad hoc cognitive radio networks. IEEE Trans. Inform. Theory 57(5), 3117–3131 (2011)

    Article  MathSciNet  Google Scholar 

  10. Larsson, E., Jorswieck, E.: Competition versus cooperation on the MISO interference channel. IEEE J. Select. Areas in Commun. 26(7), 1059–1069 (2008)

    Article  Google Scholar 

  11. Marsch, P., Fettweis, G.: Coordinated Multi-point in Mobile Communications: From Theory to Practice. Cambridge University Press, New York: USA (2011)

    Book  Google Scholar 

  12. Nguyen, D.H.N., Le-Ngoc, T.: Multiuser downlink beamforming in multicell wireless systems: A game theoretical approach. IEEE Trans. Signal Process. 59(7), 3326–3338 (2011)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, D.H.N., Nguyen-Le, H., Le-Ngoc, T.: Block-diagonalization precoding in a multiuser multicell MIMO system: Competition and coordination. IEEE Trans. Wireless Commun. 13(2), 968–981 (2014)

    Article  Google Scholar 

  14. Nguyen-Le, H., Nguyen, D.H.N., Le-Ngoc, T.: Game-based zero-forcing precoding for multicell multiuser transmissions. In: Proc. IEEE Veh. Technol. Conf., pp. 1–5. San Francisco, CA, USA (2011)

    Google Scholar 

  15. Pan, Z., Wong, K.K., Ng, T.S.: Generalized multiuser orthogonal space-division multiplexing. IEEE Trans. Wireless Commun. 3(6), 1969–1973 (2004)

    Article  Google Scholar 

  16. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33(3), 520–534 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Scutari, G., Palomar, D.P., Barbarossa, S.: Competitive design of multiuser MIMO system based on game theory: a unified view. IEEE J. Select. Areas in Commun. 26(9), 1089–1102 (2008)

    Article  Google Scholar 

  18. Scutari, G., Palomar, D.P., Barbarossa, S.: The MIMO iterative waterfilling algorithm. IEEE Trans. Signal Process. 57(5), 1917–1935 (2009)

    Article  MathSciNet  Google Scholar 

  19. Shen, Z., Chen, R., Andrews, J., Heath, R., Evans, B.: Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization. IEEE Trans. Signal Process. 54(9), 3658–3663 (2006)

    Article  Google Scholar 

  20. Spencer, Q., Swindlehurst, A., Haardt, M.: Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. Signal Process. 52(2), 461–471 (2004)

    Article  MathSciNet  Google Scholar 

  21. Vishwanath, S., Jindal, N., Goldsmith, A.: Duality, achievable rates and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. Inform. Theory 49(10), 2658–2668 (2003)

    Article  MathSciNet  Google Scholar 

  22. Wong, K.K., Murch, R., Letaief, K.: A joint-channel diagonalization for multiuser MIMO antenna systems. IEEE Trans. Wireless Commun. 2(4), 773–786 (2003)

    Article  Google Scholar 

  23. Ye, S., Blum, R.S.: Optimized signaling for MIMO interference systems with feedback. IEEE Trans. Signal Process. 51(11), 2839–2848 (2003)

    Article  Google Scholar 

  24. Yoo, T., Goldsmith, A.: On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J. Select. Areas in Commun. 24(3), 528–541 (2006)

    Article  Google Scholar 

  25. Yu, W., Cioffi, J.: Sum capacity of Gaussian vector broadcast channels. IEEE Trans. Inform. Theory 50(9), 1875–1892 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Nguyen, D.H.N., Le-Ngoc, T. (2014). Block-Diagonalization Precoding in Multiuser Multicell MIMO Systems. In: Wireless Coordinated Multicell Systems. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06337-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06337-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06336-2

  • Online ISBN: 978-3-319-06337-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics