Skip to main content

Monte Carlo Simulation vs. Polynomial Chaos in Structural Analysis: A Numerical Performance Study

  • Conference paper
  • First Online:
  • 1143 Accesses

Abstract

The present work revisits the computational performance of non-intrusive Monte Carlo versus intrusive Galerkin methods for large-scale stochastic systems in the framework of high performance computing environments. The purpose of this work is to perform an assessment of the range of the relative superiority of these approaches with regard to a variety of stochastic parameters. In both approaches, the solution of the resulting algebraic equations is performed with a combination of primal and dual domain decomposition methods implementing specifically tailored preconditioners.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anders M, Hori M (2001) Three-dimensional stochastic finite element method for elasto-plastic bodies. Int J Numer Methods Eng 51:449–478

    Article  MATH  MathSciNet  Google Scholar 

  • Charmpis DC, Papadrakakis M (2005) Improving the computational efficiency in finite element analysis of shells with uncertain properties. Comput Methods Appl Mech Eng 194:1447–1478

    Article  MATH  Google Scholar 

  • Chung DB, Guttierez MA, Graham-Brady LL, Lingen F-J (2005) Efficient numerical strategies for spectral stochastic finite element models. Int J Numer Meth Eng 64:1334–1349

    Article  MATH  Google Scholar 

  • Desceliers C, Ghanem R, Soize C (2005) Polynomial chaos representation of a stochastic preconditioner. Int J Numer Methods Eng 64(5):618–634

    Article  MATH  MathSciNet  Google Scholar 

  • Fragakis Y, Papadrakakis M (2003) The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Comput Methods Appl Mech Eng 192:35–36

    Article  Google Scholar 

  • Fragakis Y, Papadrakakis M (2004) The mosaic of high performance domain decomposition methods for structural mechanics-part II: formulation enhancements, multiple right-hand sides and implicit dynamics. Comput Methods Appl Mech Eng 193:4611–4662

    Article  MATH  Google Scholar 

  • Fraunfelder P, Schwab C, Todor RA (2005) Finite elements for elliptic problems with stochastic coefficients. Comput Methods Appl Mech Eng 194:205–228

    Article  Google Scholar 

  • Ghanem R, Kruger RM (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129:289–303

    Article  MATH  Google Scholar 

  • Ghanem R, Spanos PD (1990) Polynomial chaos in stochastic finite elements. J Appl Mech ASME 57:197–202

    Article  MATH  Google Scholar 

  • Ghosh D, Avery P, Farhat C (2008) A method to solve spectral stochastic finite element problems for large-scale systems. Int J Numer Meth Eng 00:1–6

    Google Scholar 

  • Ghosh D, Avery P, Farhat C (2009) A FETI-preconditioned conjugate gradient method for large-scale stochastic finite element problems. Int J Numer Meth Eng 80:914–931

    Article  MATH  MathSciNet  Google Scholar 

  • Grigoriu M (2006) Evaluation of Karhunen-Loève, spectral and sampling representations for stochastic processes. J Eng Mech 132:179–189

    Article  Google Scholar 

  • Huang SP, Quek ST, Phoon KK (2001) Convergence study of the truncated Karhunen-Loève expansion for simulation of stochastic processes. Int J Numer Methods Eng 52:1029–1043

    Article  MATH  Google Scholar 

  • Keese A, Matthies HG (2005) Hierarchical parallelisation for the solution of stochastic finite element equations. Comput Struct 83:1033–1047

    Article  MathSciNet  Google Scholar 

  • Li CF, Feng YT, Owen DRJ (2006) Explicit solution to the stochastic system of linear algebraic equations \((\mbox{ $\acute{a}$}_{1}a_{1} + \mbox{ $\acute{a}$}_{2}a_{2} + \cdots + \mbox{$ \acute{a}$}_{m}a_{m})x = b\). Comput Methods Appl Mech Eng 195(44–47):6560–6576

    Article  MATH  MathSciNet  Google Scholar 

  • Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194:1295–1331

    Article  MATH  MathSciNet  Google Scholar 

  • Panayirci HM (2010) Efficient solution of Galerkin-based polynomial chaos expansion systems. Adv Eng Softw 41:1277–1286

    Article  MATH  Google Scholar 

  • Papadrakakis M (1993) Solving large-scale linear problems in solid and structural mechanics. In: Solving large-scale problems in mechanics, Wiley, pp 1–37

    Google Scholar 

  • Papadrakakis M, Kotsopulos A (1999) Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation. Comput Methods Appl Mech Eng 168:305–320

    Article  MATH  Google Scholar 

  • Pellissetti MF, Ghanem R (2000) Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv Eng Softw 31:607–616

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the European Research Council Advanced Grant MASTER – Mastering the computational challenges in numerical modeling and optimum design of CNT reinforced composites (ERC-2011-ADG-20110209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Stavroulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Stavroulakis, G., Giovanis, D.G., Papadrakakis, M., Papadopoulos, V. (2014). Monte Carlo Simulation vs. Polynomial Chaos in Structural Analysis: A Numerical Performance Study. In: Papadrakakis, M., Stefanou, G. (eds) Multiscale Modeling and Uncertainty Quantification of Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-06331-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06331-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06330-0

  • Online ISBN: 978-3-319-06331-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics