Skip to main content

Remote Sensing and Modeling of Coral Reef Resilience

  • Chapter
  • First Online:

Part of the book series: Coastal Research Library ((COASTALRL,volume 9))

Abstract

A new paradigm has emerged for management of coral reefs in an era of changing climate – managing for resilience. A fundamental need for such management to be effective is our ability to measure and map coral reef resilience. We review the resilience concept and factors that may make a coral reef more or less resilient to climate-driven impacts, and focus on recent advances in a trio of technologies – remote sensing, spatial distribution modeling, and ecosystem simulation – that promise to improve our ability to quantify coral reef resilience across reefs. Remote sensing allows direct mapping of several ecosystem variables that influence reef resilience, including coral and algal cover, as well as a range of coral reef stressors, as exemplified by three case studies. Spatial distribution modeling allows exploitation of statistical relationships between mappable environmental variables and factors that influence resilience but which cannot be mapped directly, such as herbivore biomass. Ecosystem simulation modeling allows predictions to be made for the trajectories of reef ecosystems, given their initial state, interactions between ecosystem components, and a realistic current and future disturbance regime. Together, these technologies have the potential to allow production of coral reef resilience maps. We conclude with a fourth case study that illustrates integration of resilience maps into a multi-objective decision support framework. Implementation of the managing for resilience paradigm is still in its infancy, but the rapidly advancing technologies reviewed here can provide the resilience maps needed for its successful operationalization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad W, Neil D (1994) An evaluation of Landsat Thematic Mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR). Int J Remote Sens 15:2583–2597

    Google Scholar 

  • Aitken J, Ramnath V, Feygels V, Mathur A, Kim M, Park JY, Tuell G (2010) Prelude to CZMIL: seafloor imaging and classification results achieved with CHARTS and the Rapid Environmental Assessment (REA) Processor. Proc SPIE 7695:76950S-1. doi:10.1117/12.851915

    Google Scholar 

  • Anderson DA, Armstrong RA, Weil E (2013) Hyperspectral sensing of disease stress in the Caribbean reef-building coral, Orbicella faveolata – perspectives for the field of coral disease monitoring. PLoS One 8(12):e81478. doi:10.1371/journal.pone.0081478

    Google Scholar 

  • Andréfouët S, Guzman HM (2005) Coral reef distribution, status and geomorphology-biodiversity relationship in Kuna Yala (San Blas) archipelago, Caribbean Panama. Coral Reefs 24:31–42

    Google Scholar 

  • Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Perez R, Mumby PJ, Riegl B, Yamano H, White WH (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88(1–2):128–143

    Google Scholar 

  • Ban SS, Graham NA, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Glob Chang Biol, pp 681–697 doi:10.1111/gcb.12453

  • Bierwirth PN, Lee TJ, Burne RV (1993) Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogramm Eng Remote Sens 59:331–338

    Google Scholar 

  • Boss E, Zaneveld JRV (2003) The effect of bottom substrate on inherent optical properties: evidence of biogeochemical processes. Limnol Oceanogr 48:346–354

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:e124

    Google Scholar 

  • Burke LK, Reytar MS, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington, DC

    Google Scholar 

  • Bunt JAC, Larcombe P, Jago CF (1999) Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter. Cont Shelf Res 19:1199–1220

    Google Scholar 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci 105(42):16201–16206

    Google Scholar 

  • Caires S, Sterl A (2005) A new nonparametric method to correct model data: application to significant wave height from the ERA-40 re-analysis. J Atmos Oceanic Tech 22:443–459

    Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536

    Google Scholar 

  • Capolsini P, Andréfouët S, Rion C, Payri C (2003) A comparison of Landsat ETM+, SPOT HRV, IKONOS, ASTER, and airborne MASTER data for coral reef habitat mapping in South Pacific islands. Can J Remote Sens 29(2):187–200

    Google Scholar 

  • Carilli JE, Norris RD, Black BA, Walsh SM, McField M (2009) Local stressors reduce coral resilience to bleaching. PLoS One 4(7):e6324. doi:10.1371/journal.pone.0006324

    Google Scholar 

  • Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present and future of the AVHRR Pathfinder SST Program. In: Barale V, Gower JFR, Alberotanza L (eds) Oceanography from space: revisited. Springer, London. Springer Dordrecht Heidelberg London New York doi:10.1007/978-90-481-8681-5_16

    Google Scholar 

  • Cheal AJ, MacNeil MA, Cripps E, Emslie MJ, Jonker M, Schaffelke B, Sweatman H (2010) Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29(4):1005–1015

    Google Scholar 

  • Chen C-T, Millero FJ (1977) Speed of sound in seawater at high pressures. J Acoust Soc Am 62:1129–1135

    Google Scholar 

  • Cheung WWL, Lam VWY, Pauly D (2008) Modelling present and climate-shifted distribution of marine fishes and invertebrates, Fisheries Centre research reports 16(3). The Fisheries Centre, University of British Columbia, Vancouver

    Google Scholar 

  • Cinner JE, Huchery C, Darling ES, Humphries AT, Graham NAJ, Hicks CC, Marshall N, McClanahan TR (2013) Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS One 8(9):e74321. doi:10.1371/journal.pone.0074321

    Google Scholar 

  • Costa BM, Battista TA (2013) The semi-automated classification of acoustic imagery for characterizing coral reef ecosystems. Int J Remote Sens 34(18):6389–6422

    Google Scholar 

  • Cumming GS (2011a) Spatial resilience in social-ecological systems. Springer, London

    Google Scholar 

  • Cumming GS (2011b) Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landsc Ecol 26(7):899–909

    Google Scholar 

  • Curran PJ, Dash J (2005) Algorithm theoretical basis document, ATBD 2.22, chlorophyll index. University of Southampton. Available at: https://earth.esa.int/instruments/meris/atbd/atbd_2_22.pdf

  • Dawson TP, Rounsevell MD, Kluvánková-Oravská T, Chobotová V, Stirling A (2010) Dynamic properties of complex adaptive ecosystems: implications for the sustainability of service provision. Biodivers Conserv 19(10):2843–2853

    Google Scholar 

  • Dekker AG, Phinn SR, Anstee J, Bissett P, Brando V, Casey B, Fearns P, Hedley J, Klonowski W, Lee ZP, Lynch M, Lyons M, Mobley CD, Roelfsema C (2011) Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol Oceanogr Methods 9:396–425

    Google Scholar 

  • Dudgeon SR, Aronson RB, Bruno JF, Precht WF (2010) Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser 413:201–216

    Google Scholar 

  • Dustan P, Dobson E, Nelson G (2002) Landsat Thematic Mapper: detection of shifts in community composition of coral reefs. Conserv Biol 15:892–902

    Google Scholar 

  • Eakin CM et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5(11):e13969

    Google Scholar 

  • Edwards HJ, Elliott IA, Eakin CM, Irikawa A, Madin SJ, McField M, Morgan JA, van Woesik R, Mumby PJ (2011) How much time can herbivore protection buy for coral reefs under realistic regimes of hurricanes and coral bleaching? Glob Chang Biol 17:2033–2048

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. doi:10.1146/annurev.ecolsys.110308.120159

    Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1(9):488–494

    Google Scholar 

  • Epps S, Lohrenz S, Tuell G, Barbor K (2010) Development of a Suspended Particulate Matter (SPM) algorithm for the Coastal Zone Mapping and Imaging Lidar (CZMIL). Proc SPIE 7695:769514. doi:10.1117/12.851901

    Google Scholar 

  • Ernstsen VB, Noormets R, Hebbeln D, Bartholomä A, Flemming BW (2006) Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Mar Lett 26:141–149

    Google Scholar 

  • Foster G, Gleason A, Costa B, Battista T, Taylor C (2013) Acoustic applications. In: Goodman JA, Purkis SJ, Phinn RP (eds) Coral reef remote sensing. Springer, Dordrecht

    Google Scholar 

  • Franklin J (2009) Mapping species distributions. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30

    Google Scholar 

  • Game ET, Watts ME, Wooldridge S, Possingham HP (2008) Planning for persistence in marine reserves: a question of catastrophic importance. Ecol Appl 18(3):670–680

    Google Scholar 

  • Garcia-Salgado MA, Camarena TL, Vasquez MG, Gold B, Galland GG, Nava M, Alarcon GD, Ceja VM (2006) Baseline of the status of the Mesoamerican barrier reef systems: results of synoptic monitoring from 2004 and 2005, vol 1. Project for the conservation and sustainable use of the Meso-American Barrier Reef System (MBRS). Project Coordinating Unit, Belize City

    Google Scholar 

  • Giardino C, Brando V, Dekker A, Strömbeck N, Candiani G (2007) Assessment of water quality in Lake Garda (Italy) using Hyperion. Remote Sens Environ 109(2):183–195

    Google Scholar 

  • Globcolour (2008) Global ocean colour for carbon cycle research. Observation de la Terre – Environnement (ACRI-ST), Sophia Antipolis. doi:10.1594/PANGAEA.695832

  • Goodman JA, Ustin SL (2007) Classification of benthic composition in a coral reef environment using spectral unmixing. J Appl Remote Sens 1:011501. doi:10.1117/1.2815907

    Google Scholar 

  • Goodman JA, Purkis SJ, Phinn SR (eds) (2013) Coral reef remote sensing. Springer, Dordrecht

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford University Press, Oxford, p 496

    Google Scholar 

  • Gove JM, Williams GJ, McManus MA, Heron SF, Sandin SA, Vetter OJ, Foley DG (2013) Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS One 8:e61974

    Google Scholar 

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32(2):1–12

    Google Scholar 

  • Green E, Mumby P, Edwards A, Clark C (1996) A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manag 24:1–40

    Google Scholar 

  • Grober-Dunsmore R, Pittman SJ, Caldow C, Kendall MA, Fraser T (2009) Chapter 14: A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Dordrecht, pp 493–530

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Gunderson L (2000) Resilience in theory and practice. Ann Rev Ecol Syst 31:425–439

    Google Scholar 

  • Harborne AR, Mumby PJ, Zychaluk K, Hedley JD, Blackwell PG (2006) Modeling the beta diversity of coral reefs. Ecology 87:2871–2881

    Google Scholar 

  • Hedley J (2013) Hyperspectral applications. In: Goodman JA, Purkis SJ, Phinn RP (eds) Coral reef remote sensing. Springer, Dordrecht

    Google Scholar 

  • Hedley J, Roelfsema C, Koetz B, Phinn S (2012) Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sens Environ 120:145–155

    Google Scholar 

  • Hengl T, Heuvelink G, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120:75–93

    Google Scholar 

  • Heron SF, Willis BL, Skirving WJ, Eakin CM, Page CA, Miller IR (2010) Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier reef corals. PLoS One. doi:10.1371/journal.pone.0012210

    Google Scholar 

  • Herman JR, Krotkov N, Celarier E, Larko D, Labow G (1999) Distribution of UV radiation at the Earth’s surface from TOMS measured UV-backscattered radiances. J Geophys Res 104:12059–12076

    Google Scholar 

  • Hochberg EJ, Atkinson MJ (2000) Spectral discrimination of coral reef benthic communities. Coral Reefs 19:164–171

    Google Scholar 

  • Hochberg EJ, Atkinson MJ, Andréfouët S (2003) Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens Environ 85:159–173

    Google Scholar 

  • Hoegh-Guldberg O et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742

    Google Scholar 

  • Hoitink AJF, Hoekstra P (2005) Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coast Eng 52(2):103–118

    Google Scholar 

  • Holden H, LeDrew EF (1998) Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis and derivative spectroscopy. Remote Sens Environ 65:217–224

    Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Google Scholar 

  • Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62(4):447–502

    Google Scholar 

  • Holling CS (1996) Engineering resilience vs. ecological resilience. In: Schulze PC (ed) Engineering within ecological constraints. National Academy Press, Washington, DC, pp 31–43

    Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44(3):932–940

    Google Scholar 

  • Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25(11):633–642

    Google Scholar 

  • IMaRS (2004) Millennium Coral Reef Mapping Project. University of South Florida, Institute for Marine Remote Sensing, St. Petersburg

    Google Scholar 

  • Jerlov NG (1968) Optical oceanography, Elsevier oceanography series 5. Elsevier, New York, 194 p

    Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, Van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28(2):307–325

    Google Scholar 

  • Joyce K, Phinn S, Roelfsema C (2013) Live coral cover index testing and application with hyperspectral airborne image data. Remote Sens 5(11):6116–6137

    Google Scholar 

  • Jupiter S, Roelfsema CM, Phinn SR (2013) Science and management. In: Goodman JA, Purkis SJ, Phinn RP (eds) Coral reef remote sensing. Springer, Dordrecht

    Google Scholar 

  • Jupp DLB (1988) Background and extensions to depth of penetration (DOP) mapping in shallow coastal waters. In: Proceedings of the international symposium on remote sensing of the coastal zone, Gold Coast, pp IV.2.1–IV.2.19

    Google Scholar 

  • Knowlton N (1992) Thresholds and multiple stable states in coral reef community dynamics. Am Zool 32(6):674–682

    Google Scholar 

  • Knudby A, LeDrew E, Newman C (2007) Progress in the use of remote sensing for coral reef biodiversity studies. Prog Phys Geogr 31:421–434

    Google Scholar 

  • Knudby A, LeDrew EF, Brenning A (2010a) Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens Environ 114:1230–1241

    Google Scholar 

  • Knudby A, Brenning A, LeDrew E (2010b) New approaches to modelling fish-habitat relationships. Ecol Mod 221:503–511

    Google Scholar 

  • Knudby A, Roelfsema C, Lyons M, Phinn S, Jupiter S (2011) Mapping fish community variables by Integrating field and satellite data, object-based image analysis and modeling in a traditional Fijian Fisheries management area. Remote Sens 3:460–483. doi:10.3390/rs3030460

    Google Scholar 

  • Knudby A, Jupiter S, Roelfsema C, Lyons M, Phinn S (2013a) Mapping coral reef resilience indicators using field and remotely sensed data. Remote Sens 5(3):1311–1334

    Google Scholar 

  • Knudby A, Kenchington E, Murillo FJ (2013b) Modeling the distribution of Geodia sponges and sponge grounds in the Northwest Atlantic. PLoS One 8(12):e82306. doi:10.1371/journal.pone.0082306

    Google Scholar 

  • Knudby A, Nordlund LM, Palmqvist G, Wikström K, Koliji A, Lindborg R, Gullström M (2014) Using multiple Landsat scenes in an ensemble classifier reduces classification error in a stable nearshore environment. Int J Appl Earth Obs Geoinform 28:90–101

    Google Scholar 

  • Krige DG (1951) A statistical approach to some mine valuations and allied problems at the Witwatersrand. University of Witwatersrand, Johannesburg

    Google Scholar 

  • Le Provost C, Lyard F, Molines JM, Genco ML, Rabilloud F (1998) A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. Geophys Res Lett 103:5513–5529

    Google Scholar 

  • LeDrew EF, Holden H, Wulder MA, Derksen C, Newman C (2004) A spatial statistical operator applied to multidate satellite imagery for identification of coral reef stress. Remote Sens Environ 91:271–279

    Google Scholar 

  • Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1998) Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl Optics 37(27):6329–6338

    Google Scholar 

  • Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl Optics 38:3831–3843

    Google Scholar 

  • Leon J, Woodroffe CD (2011) Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. Int J Geogr Inf Sci 25:949–969

    Google Scholar 

  • Levin SA, Lubchenco J (2008) Resilience, robustness, and marine ecosystem-based management. Bioscience 58(1):27–32

    Google Scholar 

  • Logan CA, Dunne JP, Eakin CM, Donner SD (2014) Incorporating adaptive responses into future projections of coral bleaching. Glob Chang Biol 20:125–139

    Google Scholar 

  • Lyzenga DR (1978) Passive remote-sensing techniques for mapping water depth and bottom features. Appl Optics 17:379–383

    Google Scholar 

  • Maina J, Venus V, McClanahan TR, Ateweberhan M (2008) Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models in the western Indian Ocean. Ecol Model 212:180–199

    Google Scholar 

  • Maina J, McClanahan TR, Venus V, Ateweberhan M, Madin J (2011) Global gradients of coral exposure to environmental stresses and implications for local management. PLoS One 6:e23064

    Google Scholar 

  • Manzello D, Enochs I, Musielewicz S, Carlton R, Gledhill D (2013) Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world. J Geophys Res Oceans 118(10):5312–5321

    Google Scholar 

  • McClanahan T (1995) A coral reef ecosystem-fisheries model: impacts of fishing intensity and catch selection on reef structure and processes. Ecol Model 80:1–19

    Google Scholar 

  • McClanahan TR, Ateweberhan M, Sebastian CR, Graham NAJ, Wilson SK, Bruggemann JH, Guillaume MMM (2007) Predictability of coral bleaching from synoptic satellite and in situ temperature observations. Coral Reefs 26:695–701

    Google Scholar 

  • McClanahan TR, Cinner JE, Graham NAJ, Daw TM, Maina J, Stead SM, Wamukota A, Brown K, Venus V, Polunin NVC (2009) Identifying reefs of hope and hopeful actions: contextualizing environmental, ecological, and social parameters to respond effectively to climate change. Conserv Biol 23(3):662–671

    Google Scholar 

  • McClanahan TR, Donner SD, Maynard JA, MacNeil MA, Graham NAJ et al (2012) Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS One 7(8):e42884. doi:10.1371/journal.pone.0042884

    Google Scholar 

  • McClanahan TR, Graham NA, Darling ES (2014) Coral reefs in a crystal ball: predicting the future from the vulnerability of corals and reef fishes to multiple stressors. Curr Opin Environ Sustain 7:59–64

    Google Scholar 

  • McLeod E, Salm R, Green A, Almany J (2008) Designing marine protected area networks to address the impacts of climate change. Front Ecol Environ 7(7):362–370

    Google Scholar 

  • Melbourne-Thomas J, Johnson CR, Fung T, Seymour RN, Cherubin LM, Arias-Gonzalez JE, Fulton EA (2011) Regional-scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol Appl 21(4):1380–1398

    Google Scholar 

  • Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Man 46(1):27–46

    Google Scholar 

  • Mobley CD, Sundman LK, Davis CO, Bowles JH, Downes TV, Leathers RA, Montes MJ, Bissett WP, Kohler DDR, Reid RP, Louchard EM, Gleason A (2005) Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl Optics 44(17):3576–3592

    Google Scholar 

  • Morel A, Bélanger S (2006) Improved detection of turbid waters from ocean colour sensors information. Remote Sens Environ 102:237–249

    Google Scholar 

  • Morel A, Gentili B (2009) A simple band ratio technique to quantify the coloured dissolved and detrital organic material from ocean colour remotely sensed data. Remote Sens Environ 113:998–1011

    Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

    Google Scholar 

  • Moses WJ, Gitelson AA, Berdnikov S, Povazhnyy V (2009) Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges. Environ Res Lett 4:045005

    Google Scholar 

  • Mumby P (2001) Beta and habitat diversity in marine systems: a new approach to measurement, scaling and interpretation. Oecologia 128:274–280

    Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82(2–3):248–257

    Google Scholar 

  • Mumby PJ, Hastings A (2008) The impact of ecosystem connectivity on coral reef resilience. J Appl Ecol 45(3):854–862

    Google Scholar 

  • Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23(10):555–563

    Google Scholar 

  • Mumby P, Green E, Edwards A, Clark C (1997) Coral reef habitat-mapping: how much detail can remote sensing provide? Mar Biol 130:193–202

    Google Scholar 

  • Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF, Hochberg EJ, Stumpf RP, David LT (2004a) Remote sensing of coral reefs and their physical environment. Mar Pollut Bull 48(3–4):219–228

    Google Scholar 

  • Mumby PJ, Hedley JD, Chisholm JRM, Clark CD, Ripley H, Jaubert J (2004b) The cover of living and dead corals from airborne remote sensing. Coral Reefs 23:171–183

    Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004c) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Google Scholar 

  • Mumby PJ, Harborne AR, Williams J, Kappel CV, Brumbaugh DR, Micheli F, Holmes KE, Dahlgren CP, Paris CB, Blackwell PG (2007a) Trophic cascade facilitates coral recruitment in a marine reserve. Proc Natl Acad Sci U S A 104:8362–8367

    Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007b) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101. doi:10.1038/nature06252

    Google Scholar 

  • Mumby PJ, Steneck RS, Hastings A (2013a) Evidence for and against the existence of alternate attractors on coral reefs. Oikos 122:481–491

    Google Scholar 

  • Mumby PJ, Wolff NH, Bozec YM, Chollett I, Halloran P (2013b) Operationalizing the resilience of coral reefs in an era of climate change. Conserv Lett 1–12. doi: 10.1111/conl.12047

  • Mumby PJ, Chollett I, Bozec Y-M, Wolf NH (2014) Ecological resilience, robustness and vulnerability: how do these concepts benefit ecosystem management? Curr Opin Environ Sustain 7:22–27. doi:10.1016/j.cosust.2013.11.021

    Google Scholar 

  • Myers MR, Hardy JT, Mazel CH, Dustan P (1999) Optical spectra and pigmentation of Caribbean reef corals and macroalgae. Coral Reefs 18:179–186

    Google Scholar 

  • NASA (2014) OceanColor Web. http://oceancolor.gsfc.nasa.gov/. Accessed 29 Jan 2014

  • Nagelkerken I, Sheaves M, Baker R, Connolly RM (2012) The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries doi:10.1111/faf.12057

    Google Scholar 

  • Newman C, Knudby A, LeDrew E (2007) Assessing the effect of management zonation on live coral cover using multi-date IKONOS satellite imagery. J Appl Remote Sens 1:011504

    Google Scholar 

  • Nyström M, Folke C (2001) Spatial resilience of coral reefs. Ecosystems 4(5):406–417

    Google Scholar 

  • Nyström M, Graham NAJ, Lokrantz J, Norström AV (2008) Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27(4):795–809

    Google Scholar 

  • O’Reilly JE, 24 Co-authors (2000) In: Hooker SB, Firestone ER (eds) SeaWiFS postlaunch calibration and validation analyses, Part 3, NASA technical memorandum, 2000-206892, vol 11. NASA Goddard Space Flight Center, Greenbelt, Maryland 49 pp

    Google Scholar 

  • Odum HT (1983) Systems ecology: an introduction. Wiley, New York

    Google Scholar 

  • Olds AD, Pitt KA, Maxwell PS, Connolly RM (2012) Synergistic effects of reserves and connectivity on ecological resilience. J Appl Ecol 49(6):1195–1203

    Google Scholar 

  • Olds AD, Albert S, Maxwell PS (2013) Mangrove-reef connectivity promotes the effectiveness of marine reserves across the western Pacific. Global Ecol Biogeogr 22(9):1040–1049

    Google Scholar 

  • Ouillon S, Douillet P, Petrenko A, Neveux J, Dupouy C, Froidefond J, Andréfouët S, Munoz-Caravaca A (2008) Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors 8:4165–4185

    Google Scholar 

  • Parrish JD (1989) Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine Ecol Progr Ser 58:143–160

    Google Scholar 

  • Palandro D, Andréfouët S, Muller-Karger FE, Dustan P, Hu C, Hallock P (2003) Detection of changes in coral reef communities using Landsat 5/TM and Landsat 7/ETM+ data. Can J Remote Sens 29:201–209

    Google Scholar 

  • Park JY, Ramnath V, Feygels V, Kim M, Mathur A, Aitken J, Tuell G (2010) Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data. Proc SPIE 7695:769515. doi:10.1117/12.851991

    Google Scholar 

  • Phinn SR, Roelfsema CM, Mumby PJ (2012) Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int J Remote Sens 33:3768–3797

    Google Scholar 

  • Phinney J, Muller-Karger F, Dustan P (2002) Using remote sensing to reassess the mass mortality of Diadema antillarum 1983–1984. Conserv Biol 15:885–891

    Google Scholar 

  • Pinsky ML, Palumbi SR, Andréfouët S, Purkis SJ (2012) Open and closed seascapes: where does habitat patchiness create populations with high fractions of self-recruitment? Ecol Appl 22(4):1257–1267

    Google Scholar 

  • Pittman SJ, Brown KA (2011) Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS One 6(5):e20583

    Google Scholar 

  • Pittman SJ, Knudby A (2014) Predictive mapping of coral reef fish species and communities. In: Bortone SA (ed) Interrelationships between coral reefs and fisheries. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Pittman SJ, Olds AD (2014) Shifting perceptions from patch to seascapes in reef fish ecology. In: Mora C (ed) Ecology of fishes on coral reefs, The functioning of an ecosystem in a changing world, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pittman SJ, Costa BM, Battista TA (2009) Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J Coast Res 53:27–38

    Google Scholar 

  • Pittman SJ, Costa B, Jeffrey CF, Caldow C (2011) Importance of seascape complexity for resilient fish habitat and sustainable fisheries. In: Proceedings of the Gulf and Caribbean Fisheries Institute, 63, 420–426. Gulf and Caribbean Fisheries Institute, c/o Harbor Branch Oceanographic Institution Inc., Fort Pierce

    Google Scholar 

  • Pittman SJ, Costa B, Wedding LM (2013) LiDAR applications. In: Coral reef remote sensing. Springer, Dordrecht, pp 145–174

    Google Scholar 

  • Pratchett MS, Hoey AS, Wilson SK (2014) Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr Opin Environ Sustain 7:37–43

    Google Scholar 

  • Purkis SJ, Brock JC (2013) Lidar overview. In: Goodman JA, Purkis SJ, Phinn RP (eds) Coral reef remote sensing. Springer, Dordrecht

    Google Scholar 

  • Purkis SJ, Myint SW, Riegl BM (2006) Enhanced detection of the coral Acropora cervicornis from satellite imagery using a textural operator. Remote Sens Environ 101(1):82–94

    Google Scholar 

  • Purkis SJ, Graham NAJ, Riegl BM (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs 27:167–178

    Google Scholar 

  • Purkis SJ, Rowlands GP, Riegl BM, Renaud PG (2010) The paradox of tropical karst morphology in the coral reefs of the arid Middle East. Geology 38(3):227–230

    Google Scholar 

  • Riegl B, Guarin H (2013) Acoustic methods overview. In: Goodman JA, Purkis SJ, Phinn RP (eds) Coral reef remote sensing. Springer, Dordrecht

    Google Scholar 

  • Roelfsema C, Phinn S, Jupiter S, Comley J, Albert S (2013) Mapping coral reefs at reef to reef-system scales, 10s–1000s km(2), using object-based image analysis. Int J Remote Sens 34(18):6367–6388

    Google Scholar 

  • Rowlands G (2013) Remote sensing the diversity, distribution and resilience of coral reef environments. Ph.D. thesis, Nova Southeastern University, Fort Lauderdale

    Google Scholar 

  • Rowlands G, Purkis S, Riegl B, Metsamaa L, Bruckner A, Renaud P (2012) Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia. Mar Pollut Bullet 64(6):1222–1237

    Google Scholar 

  • Selig ER, Casey KS, Bruno JF (2010) New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Glob Ecol Biogeogr 19:397–411

    Google Scholar 

  • Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ (2005) Coloured dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys Res Lett 32:L20605. doi:10.1029/2005GL024310

    Google Scholar 

  • Smith VE, Rogers RH, Reed LE (1975) Automated mapping and inventory of Great Barrier Reef zonation with Landsat. Oceans 7:775–780

    Google Scholar 

  • Strong AE, Kearns EJ, Gjovig KK (2000) Sea surface temperature signals from satellites – an update. Geophys Res Lett 27(11):1667–1670

    Google Scholar 

  • Stumpf RP, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr 48(1):547–556

    Google Scholar 

  • Suzuki H, Matsakis P, Andréfouët S, Desachy J (2001) Satellite image classification using expert structural knowledge: a method based on fuzzy partition computation and simulated annealing. In: Proceedings of the annual conference of the international association for mathematical geology, Cancun, 6–12 Sept 2001

    Google Scholar 

  • Tolman HL, Alves JHGM (2005) Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Model 9:305–323

    Google Scholar 

  • Tolstoy I, Clay CS (1966) Ocean acoustics. Theory sand experiment in underwater sound. McGraw Hill, New York, p 293

    Google Scholar 

  • van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3:508–511

    Google Scholar 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112

    Google Scholar 

  • Vasilkov A, Krotkov N, Herman J, McClain C, Arrigo K, Robinson W (2001) Global mapping of underwater UV irradiances and DNA-weighted exposures using total ozone mapping spectrometer and sea-viewing wide field-of-view sensor data products. J Geophys Res 106:27205–27219

    Google Scholar 

  • Wedding LM, Lepczyk CA, Pittman SJ, Friedlander AM, Jorgensen S (2011) Quantifying seascape structure: extending terrestrial spatial pattern metrics to the marine realm. Mar Ecol Prog Ser 427:219–232

    Google Scholar 

  • Wilson SK, Graham NA, Pratchett MS, Jones GP, Polunin NV (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12(11):2220–2234

    Google Scholar 

  • Wilson SK, Adjeroud M, Bellwood DR, Berumen ML, Booth D, Bozec YM, Syms C (2010) Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. J Exp Biol 213(6):894–900

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Knudby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knudby, A., Pittman, S.J., Maina, J., Rowlands, G. (2014). Remote Sensing and Modeling of Coral Reef Resilience. In: Finkl, C., Makowski, C. (eds) Remote Sensing and Modeling. Coastal Research Library, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-06326-3_5

Download citation

Publish with us

Policies and ethics