Skip to main content

Remote Sensing of Coastal Ecosystems and Environments

  • Chapter
  • First Online:
Remote Sensing and Modeling

Part of the book series: Coastal Research Library ((COASTALRL,volume 9))

Abstract

Advances in sensor design and data analysis techniques are making remote sensing systems suitable for monitoring coastal ecosystems and their changes. Hyperspectral imagers, LiDAR and radar systems are available for mapping coastal marshes, submerged aquatic vegetation, coral reefs, beach profiles, algal blooms, and concentrations of suspended particles and dissolved substances in coastal waters. Since coastal ecosystems have high spatial complexity and temporal variability, they benefit from new satellites, carrying sensors with fine spatial (0.4–4 m) or spectral (200 narrow bands) resolution. Imaging radars are sensitive to soil moisture and inundation and can detect hydrologic features beneath the vegetation canopy. Multi-sensor and multi-seasonal data fusion techniques are significantly improving coastal land cover mapping accuracy and efficiency. Using time-series of images enables scientists to study coastal ecosystems and to determine long- term trends and short- term changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann F (1999) Airborne laser scanning – present status and future expectations. ISPRS J Photogramm Remote Sen 54:64–67

    Google Scholar 

  • Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wet Ecol Manag 18:281–296

    Google Scholar 

  • Armstrong RA (1993) Remote sensing of submerged vegetation canopies for biomass estimation. Int J Remote Sens 14:621–627

    Google Scholar 

  • Artigas FJ, Yang J (2006) Spectral discrimination of marsh vegetation types in the New Jersey meadowlands, USA. Wetlands 26:271–277

    Google Scholar 

  • Avery TE, Berlin GL (1992) Fundamentals of remote sensing and airphoto interpretation. Macmillan Publishing Company, New York

    Google Scholar 

  • Baghdadi N, Bernier M, Gauthier R, Neeson I (2001) Evaluation of C-band SAR data for wetlands mapping. Int J Remote Sens 22:71–88

    Google Scholar 

  • Baker C, Lawrence RL, Montagne C, Patten D (2007) Change detection of wetland ecosystems using Landsat imagery and change vector analysis. Wetlands 27:610–619

    Google Scholar 

  • Bergeron E, Worley CR, O’Brien T (2007) Progress in the development of shallow water mapping systems. Sea Technol 48:10–15

    Google Scholar 

  • Bertels L, Houthuys R, Deronde B, Janssens R, Verfaillie E, Van Lancker V (2012) Integration of optical and acoustic remote sensing data over the backshore-foreshore-nearshore continuum: a case study in Ostend (Belgium). J Coast Res 28:1426–1436 (in press)

    Google Scholar 

  • Blasco F, Aizpuru M, Din Ndongo D (2005) Mangroves remote sensing. In: Schwartz ML (ed) Encyclopedia of coastal science. Springer, Dordrecht, pp 614–617

    Google Scholar 

  • Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21:688–703

    Google Scholar 

  • Bonisteel JM, Nayegandhi A, Wright CW, Brock JC, Nagle DB (2009) Experimental Advanced Airborne Research LiDAR (EAARL) data processing manual. US Geological Survey Open-File Report, 2009-1078

    Google Scholar 

  • Bourgeau-Chavez LL, Kasischke ES, Brunzell SM, Mudd JP, Smith KB, Frick AL (2001) Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems. Int J Remote Sens 22:3665–3687

    Google Scholar 

  • Brock J, Sallenger A (2000) Airborne topographic mapping for coastal science and resource management. USGS Open-File Report 01–46

    Google Scholar 

  • Brock JC, Purkis SJ (2009) The emerging role of LiDAR remote sensing in coastal research and resource management. J Coast Res 53:1–5, Special issue 53, Coastal Applications of Airborne LiDAR

    Google Scholar 

  • Brock JC, Wright CW, Clayton TD, Nayegandhi A (2004) LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs 23:48–59

    Google Scholar 

  • Brock J, Wright CW, Hernandez R, Thompson P (2006) Airborne LiDAR sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract. Remote Sens Environ 104:31–42

    Google Scholar 

  • Bustamante J, Pacios F, Diaz-Delgado R, Aragones D (2009) Predictive models of turbidity and water depth in the Donana marshes using Landsat TM and ETM+ images. J Environ Manage 90:2219–2225

    Google Scholar 

  • CAMA (2009) Mapping and monitoring seagrass communities. Office of Coastal and Aquatic Management Areas, Florida Department of Environmental Protection. Available online at: http://www.dep.state.fl.us/coastal/habitats/seagrass/management/mapping.htm. Accessed 21 June 2012

  • Carter D, Scarborough R (2010) Sharing Delaware’s lidar lessons. NOAA Coastal Services Center report. Local Strateg Addressing Clim Chang 2:16–17

    Google Scholar 

  • Chadwick W (2010) Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). NOAA Ocean Explorer: submarine ring of fire 2002: Background.http://oceanexplorer.noaa.gov/explorations/02fire/background/rovsauvs/rov_auv.html

  • Christian B, Krishnayya NSR (2009) Classification of tropical trees growing in a sanctuary using Hyperion (EO-1) and SAM algorithm. Curr Sci 96:1601–1607

    Google Scholar 

  • Coppin P, Jonckhere I, Nackaerts K, Mays B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596

    Google Scholar 

  • Costa MPF, Telmer KH (2007) Mapping and monitoring lakes in the Brazilian Pantanal wetland using synthetic aperture radar imagery. Aquat Conserv Mar Freshw Ecosyst 17:277–288

    Google Scholar 

  • Cracknell AP, Hayes L (2007) Introduction to remote sensing. CRC Press, New York

    Google Scholar 

  • Dahl TE (2006) Status and trends of wetlands in the conterminous United States 1998 to 2004. U.S. Department of the Interior, Fish and Wildlife Service Publication, Washington, DC, p 112

    Google Scholar 

  • Deronde B, Houthuys R, Debruyn W, Fransaer D, Lancker VV, Hernriet J-P (2006) Use of airborne hyperspectral data and laser scan data to study beach morphodynamics along the Belgian coast. J Coast Res 22:1108–1117

    Google Scholar 

  • Dierssen HM, Zimmermann RC, Leathers RA, Downes V, Davis CO (2003) Ocean color remote sensing of seagrass and bathymetry in the Bahamas banks by high resolution airborne imagery. Limnol Oceanogr 48:444–455

    Google Scholar 

  • Dwivedi R, Rao B, Bhattacharya S (1999) Mapping wetlands of the Sundarban Delta and it’s environs using ERS-1 SAR data. Int J Remote Sens 20:2235–2247

    Google Scholar 

  • Ellis JM, Dodd HS (2000) Applications and lessons learned with airborne multispectral imaging. In: Fourteenth International Conference on Applied Geologic Remote Sensing, Las Vegas, NV

    Google Scholar 

  • Estep LL, Lillycrop WJ, Parson LE (1994) Estimation of maximum depth of penetration of a bathymetric lidar system using a Secchi depth data base. Mar Technol Soc J 28:31–36

    Google Scholar 

  • Everitt JH, Yang C, Escobar DE, Webster CF, Lonard RI, Davis MR (1999) Using remote sensing and spatial information technologies to detect and map two aquatic macrophytes. J Aquat Plant Manag 37:71–80

    Google Scholar 

  • Fearns PRC, Klonowski W, Babcock RC, England P, Phillips J (2011) Shallow water substrate mapping using hyperspectral remote sensing. Cont Shelf Res 31:1249–1259

    Google Scholar 

  • Ferguson RL, Wood LL, Graham DB (1993) Monitoring spatial change in seagrass habitat with aerial photography. Photogramm Eng Remote Sens 59:1033–1038

    Google Scholar 

  • Filippi AM, Jensen JR (2006) Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens Environ 100:512–530

    Google Scholar 

  • Finkl CW (1996) What might happen to America’s shorelines if artificial beach replenishment is curtailed: a prognosis for southeastern Florida and other sandy regions along regressive coasts. J Coast Res 12:ii–ix

    Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2005a) Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry (ALB). J Coast Res 21:501–514

    Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2005b) Submarine geomorphology of the continental shelf off southeast Florida based on interpretation of airborne laser bathymetry. J Coast Res 21:1178–1190

    Google Scholar 

  • Fyfe SK (2003) Are seagrasses spectrally distinct? Limnol Oceanogr 48:464–479

    Google Scholar 

  • Gares PA, Wang Y, White SA (2006) Using Lidar to monitor a beach nourishment project at Wrightsville Beach, North Carolina, USA. J Coast Res 22:1206–1219

    Google Scholar 

  • Garono RJ, Simenstad CA, Robinson R, Ripley H (2004) Using high spatial resolution hyperspectral imagery to map intertidal habitat structure in Hood Canal Washington, USA. Can J Remote Sens 30:54–63

    Google Scholar 

  • Gesch DB (2009) Analysis of Lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J Coast Res 49–58, Special issue 53, Coastal Applications of Airborne Lidar

    Google Scholar 

  • Ghioca-Robrecht DM, Johnston CA, Tulbure MG (2008) Assessing the use of multiseason QuickBird imagery for mapping invasive species in Great Lakes coastal marsh. Wetlands 28:1028–1039

    Google Scholar 

  • Gilmore MS, Civco DL, Wilson EH, Barrett N, Prisloe S, Hurd JD, Chadwick C (2010) Remote sensing and in situ measurements for delineation and assessment of coastal marshes and their constituent species. In: Wang J (ed) Remote sensing of coastal environment. Springer, Boca Raton

    Google Scholar 

  • Guenther G (2007) Airborne LiDAR bathymetry digital elevation. Model technologies and applications. In: Maune D (ed) The DEM users manual. American Society for Photogrammetry and Remote Sensing, pp 253–320

    Google Scholar 

  • Guenther G, Larocque P, Lillycrop W (1994) Multiple surface channels in SHOALS airborne LiDAR. SPIE Ocean Opt XII 2258:422–430

    Google Scholar 

  • Guenther GC, Tomas RWL, Larocque PE (1996) Design considerations for achieving high accuracy with the SHOALS bathymetric LiDAR system. SPIE: Laser Remote Sens Nat Waters From Theory Pract 15:54–71

    Google Scholar 

  • Gullstrom M, Lunden B, Bodin M, Kangwe J, Ohman MC, Mtolera SP, Bjork M (2006) Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar Coast Shelf Sci 67:399–408

    Google Scholar 

  • Gutierrez R, Gibeaut JC, Crawford MM, Mahoney MP, Smith S, Gutelius W, Carswell D, Macpherson E (1998) Airborne laser swath mapping of Galveston Island and Bolivar Peninsula, Texas. In: Proceedings of the fifth international conference on remote sensing for marine and coastal environments, San Diego, 1, 236–243

    Google Scholar 

  • Hame TI, Heiler I, Miguel-Ayanz JS (1998) An unsupervised change detection and recognition system for forestry. Int J Remote Sens 19:1079–1099

    Google Scholar 

  • Han L, Rundquist D (2003) The spectral responses of Ceratophyllum demersum at varying depths in an experimental tank. Int J Remote Sens 24:859–864

    Google Scholar 

  • Hapke CJ (2010) Integration of LiDAR and historical maps to measure coastal change on a variety of time and spatial scales. In: Wang Y (ed) Remote sensing of coastal environments. Springer/CRC Press, Boca Raton

    Google Scholar 

  • Harris J, Digby-Argus S (1986) The detection of wetlands on radar imagery. In: Proceedings of the tenth Canadian symposium on remote sensing Edmonton, AB

    Google Scholar 

  • Harvey KR, Hill JE (2001) Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. Remote Sens Environ 22:2911–2925

    Google Scholar 

  • Heege T, Bogner A, Pinnel N (2003) Mapping of submerged aquatic vegetation with a physically based process chain. SPIE Proc Remote Sens 5233:8

    Google Scholar 

  • Hess L, Melack J, Simonett D (1990) Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens 11:1313–1325

    Google Scholar 

  • Hess L, Melack J, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens 33:896–904

    Google Scholar 

  • Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, Greenberg JA, Rajapakse SS, Ustin S (2008) Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens Environ 112:4034–4047

    Google Scholar 

  • Heumann BW (2011) Satellite remote sensing of mangrove forests: recent advances and future opportunities. Prog Phys Geogr 35:87–108

    Google Scholar 

  • Hirano A, Madden M, Welch R (2003) Hyperspectral image data for mapping wetland vegetation. Wetlands 23:436–448

    Google Scholar 

  • Houhoulis P, Michener W (2000) Detecting wetland change: a rule-based approach using NWI and SPOT-XS data. Photogramm Eng Remote Sens 66:205–211

    Google Scholar 

  • Hundley A (1994) Report on the use of an acoustic method for mapping seagrass density and location. Report no. 940401. Offshore Scientific Services, Sydney

    Google Scholar 

  • Hughes AR, Williams SL, Duarte CM, Heck KL Jr, Waycott M (2009) Associations of concern: declining seagrasses and threatened dependent species. Front Ecol Environ 7:242–246

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. WMO/UNEP, Paris, www.ipcc.ch

    Google Scholar 

  • Irish JL, Lillycrop WJ (1997) Monitoring new pass, Florida, with high-density LiDAR bathymetry. J Coast Res 13:1130–1140

    Google Scholar 

  • Irish JL, Lillycrop WJ (1999) Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogram Remote Sens 54:123–129

    Google Scholar 

  • Irish JL, White TE (1998) Coastal engineering applications of high resolution bathymetry. Coast Eng 35:47–71

    Google Scholar 

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective, 2nd edn. Pearson Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Jensen JR (2007) Remote sensing of the environment: an earth resource perspective. Pearson Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Jensen RR, Mausel P, Dias N, Gonser R, Yang C, Everitt J, Fletcher R (2007) Spectral analysis of coastal vegetation and land cover using AISA+ hyperspectral data. Geocarto Int 22:17–28

    Google Scholar 

  • Johnson RD, Kasischke ES (1998) Change vector analysis: a technique for the multispectral monitoring of land cover and condition. Int J Remote Sens 19:411–426

    Google Scholar 

  • Kasischke E, Bourgeau-Chavez L (1997) Monitoring South Florida wetlands using ERS-1 SAR imagery. Photogramm Eng Remote Sens 63:281–291

    Google Scholar 

  • Kasischke E, Bourgeau-Chavez L, Smith K, Romanowicz E, Richardson C (1997a) Monitoring hydropatterns in South Florida ecosystems using ERS SAR data. In: 3rd ERS symposium on space at the service of our environment, Florence, pp 71–76

    Google Scholar 

  • Kasischke E, Melack J, Dobson M (1997b) The use of imaging radars for ecological applications-a review. Remote Sens Environ 59:141–156

    Google Scholar 

  • Kelly M, Tuxen K (2009) Remote sensing support for tidal wetland vegetation research and management. In: Yang X (ed) Remote sensing and geospatial technologies for coastal ecosystem assessment and management. Springer, Berlin

    Google Scholar 

  • Kempeneers P, Deronde B, Provoost S, Houthuys R (2009) Synergy of airborne digital camera and LiDAR data to map coastal dune vegetation. J Coast Res 53:73–82

    Google Scholar 

  • Khalil SM, Finkl CW (2007) Submarine geomorphology and coastal process zones: morphodynamics of the inner continental shelf off southeast Florida. J Coast Res 50:480–485 (special issue)

    Google Scholar 

  • Klemas V (2009) The role of remote sensing in predicting and determining coastal storm impacts. J Coast Res 25:1264–1275

    Google Scholar 

  • Klemas V (2011) Remote sensing of wetlands: case studies comparing practical techniques. J Coast Res 27:418–427

    Google Scholar 

  • Klemas V (2012) Remote sensing of algal blooms: an overview with case studies. J Coast Res 28:34–43

    Google Scholar 

  • Kolasa KV, Craw V (2009) Improving seagrass maps of Florida’s Springs Coast through digital imagery. Proceedings of ASPRS 2009 annual conference, Baltimore, MD, 9–13 Mar 2009

    Google Scholar 

  • Krabill WB, Wright CW, Swift RN, Frederick EB, Manizade SS, Yungel JK, Martin CF, Sonntag JG, Duffy M, Hulslander W, Brock JC (2000) Airborne laser mapping of Assateague National Seashore Beach. Photogramm Eng Remote Sens 66:65–71

    Google Scholar 

  • Laba M, Downs R, Smith S, Welsh S, Neider C, White S, Richmond M, Philpot W, Baveye P (2008) Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using Quickbird satellite imagery. Remote Sens Environ 112:286–300

    Google Scholar 

  • Lang MW, Kasischke ES (2008) Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s Coastal Plain, USA. IEEE Trans Geosci Remote Sens 46:535–546

    Google Scholar 

  • Lang MW, Mccarty GW (2008) Remote sensing data for regional wetland mapping in the United States: trends and future prospects. In: Russo RE (ed) Wetlands: ecology, conservation and restoration. Nova Science Publishers, Inc., Hauppauge

    Google Scholar 

  • Lathrop RG, Cole MB, Showalter RD (2000) Quantifying the habitat structure and spatial pattern of New Jersey (U.S.A.) salt marshes under different management regimes. Wetl Ecol Manag 8:163–172

    Google Scholar 

  • Lesser MP, Mobley CD (2007) Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery. Coral Reefs 26:819–829

    Google Scholar 

  • Li L, Ustin SL, Lay M (2005) Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA. Int J Remote Sens 26:5193–5207

    Google Scholar 

  • Lidz BH, Shinn EA, Hine AC, Locker SD (1997) Contrasts within an outlier-reef system: evidence for differential quaternary evolution, south Florida windward margin, U.S.A. J Coast Res 13(3):711–731

    Google Scholar 

  • Lillycrop WJ, Irish JL, Parson LE (1997) SHOALS system. Sea Technol 38:17–25

    Google Scholar 

  • Lillycrop WJ, Pope RW, Wozencraft JM (2002) Airborne lidar hydrography: a vision for tomorrow. Sea Technol 43:27–34

    Google Scholar 

  • Lopez RD, Edmonds CM, Slonecker TS, Jones KB, Heggem DT, Lyon JG, Jaworski E, Garofalo D, Williams D (2004) Accuracy assessment of airborne hyperspectral data for mapping opportunistic plant species in freshwater coastal wetlands. In: Lunetta RS, Lyon JG (eds) Remote sensing and GIS accuracy assessment. CRC Press, New York, pp 253–267

    Google Scholar 

  • Lunetta RS, Balogh ME (1999) Application of multi-temporal Landsat 5 TM imagery for wetland identification. Photogramm Eng Remote Sens 65:1303–1310

    Google Scholar 

  • Lunetta RS, Elvidge CD (1998) Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor Press, Ann Arbor

    Google Scholar 

  • Lyon JG, Mccarthy J (1995) Wetland and environmental applications of GIS. Lewis Publishers, New York

    Google Scholar 

  • Macleod RD, Congalton RG (1998) A quantitative comparison of change detection algorithms for monitoring eelgrass from remotely sensed data. Photogramm Eng Remote Sens 64:207–216

    Google Scholar 

  • Malthus TJ, Mumby PJ (2003) Remote sensing of the coastal zone: an overview and priorities for future research. Int J Remote Sens 24:2805–2815

    Google Scholar 

  • Martin S (2004) An introduction to remote sensing. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Martinez JM, Le Toan T (2007) Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens Environ 108:209–223

    Google Scholar 

  • Mccoy R (2005) Field methods in remote sensing. Guilford Press, New York

    Google Scholar 

  • Mckean J, Nagel D, Tonina D, Bailey P, Wright CW, Bohn C, Nayegandhi A (2009) Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LiDAR. Remote Sens 1:1065–1096

    Google Scholar 

  • Miner SP (1993) Application of acoustic hydrosurvey technology to the mapping of eelgrass (Zostera marina) distribution in Humboldt Bay, California. Coastal Zone ’93. Proceedings of the 8th symposium on coastal and ocean management, 19–23 July 1993, New Orleans, LA

    Google Scholar 

  • Mishra D, Narumalani S, Rundquist D, Lawson M (2006) Benthic habitat mapping in tropical marine environments using QuickBird multispectral data. Photogramm Eng Remote Sens 72:1037–1048

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Google Scholar 

  • Moreno A, Siljestrom P, Rey J (1998) Benthicphanerogam species recognition in side scan sonar images: importance of the sensor direction. In: Alippi A, Cannelli GB (eds) Proceedings 4th European conference on underwater acoustics. Italian National research Council, Rome, pp 173–178

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Google Scholar 

  • Morton RA, Miller TL (2005) National assessment of shoreline change: Part 2. Historical shoreline change and associated coastal land loss along the US southeast Atlantic coast. US Geological Survey Open-File Report 2005-1401

    Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82:248–257

    Google Scholar 

  • NASA/GSFC (2010) Hurricane Ike: storm surge flooding image of the Gulf Coast. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response team at NASA GSFC

    Google Scholar 

  • Nayegandhi A, Brock JC, Wright CW (2009) Small-footprint, waveform-resolving LiDAR estimation of submerged and sub-canopy topography in coastal environments. Int J Remote Sens 30:861–878

    Google Scholar 

  • NOAA (1999) Trends in U.S. coastal regions, 1970–1998. Addendum to the Proceedings: trends, and future challenges for U.S. National Ocean and Coastal Policy. NOAA, August 1999

    Google Scholar 

  • NOAA-CSC (2001) Guidance for Benthic Habitat mapping: an aerial photographic approach (by M. Finkbeiner, W. Stevenson, and R. Seaman, NOAA-CSC, Charleston, SC). NOAA/CSC/20117-PUB, 73 pp

    Google Scholar 

  • Nobi EP, Thangaradjou T (2012) Evaluation of the spatial changes in seagrass cover in the lagoons of Lakshadweep islands, India, using IRS LISS III satellite images. Geocarto Int 27:647–660

    Google Scholar 

  • Novo EMLM, Costa MPF, Mantovani JE, Lima IBT (2002) Relationship between macrophyte stand variables and radar backscatter at L and C band, Tucurui reservoir, Brazil. Int J Remote Sens 23:1241–1260

    Google Scholar 

  • Odum EP (1993) Ecology and our endangered life-support systems, 2nd edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402

    Google Scholar 

  • Paringit EC, Nadaoka K, Fortes MD, Harii S, Tamura H, Mistui J (2003) Multiangular and hyperspectral reflectance modeling of seagrass beds for remote sensing studies. In: Proceedings of the international geoscience and remote sensing symposium ’03, vol 3, pp 21–25, New York: IEEE

    Google Scholar 

  • Parson LE, Lillycrop WJ, Klein CJ, Ives RC, Orlando SP (1997) Use of LiDAR technology for collecting shallow bathymetry of Florida Bay. J Coast Res 13:1173–1180

    Google Scholar 

  • Pastol Y, Le Roux C, Louvart L (2007) LITTO3D: a seamless digital terrain model. Int Hydrogr Rev 8:38–44

    Google Scholar 

  • Peneva EI, Griffith JA, Carter GA (2008) Seagrass mapping in the Northern Gulf of Mexico using airborne hyperspectral imagery: a comparison of classification methods. J Coast Res 24:850–856

    Google Scholar 

  • Pengra BW, Johnston CA, Loveland TR (2007) Mapping an invasive plant, Phragmitesaustralis, in coastal wetlands using the EO-! Hyperion hyperspectral sensor. Remote Sens Environ 108:74–81

    Google Scholar 

  • Philpot W (2007) Estimating atmospheric transmission and surface reflectance from a glint-contaminated spectral image. IEEE Trans Geosci Remote Sens 45:448–457

    Google Scholar 

  • Phinn S, Hess LL, Finlayson CM (1999) An assessment of the usefulness of remote sensing for wetland inventory and monitoring in Australia. In: Finlayson CM, Spiers AG (eds) Techniques for enhanced wetland inventory and monitoring. Supervising Scientist Report 147, Supervising Scientist, Canberra

    Google Scholar 

  • Phinn S, Roelfsema C, Decker A, Brando V, Anstee J (2008) Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ 112:3413–3425

    Google Scholar 

  • Pinnel N, Heege T, Zimmermann S (2004) Spectral discrimination of submerged macrophytes in lakes using hyperspectral remote sensing data. SPIE Proc Ocean Opt XVII 1:1–16

    Google Scholar 

  • Pittenger RF (1989) Exploring and mapping the seafloor. Nat Geosci 177:61A

    Google Scholar 

  • Pu R, Bell S, Baggett L, Meyer C, Zhao Y (2012) Discrimination of seagrass species and cover classes with in situ hyperspectral data. J Coast Res 28:1330–1334 (in press)

    Google Scholar 

  • Pulich W Jr, Blair C, White WA (1997) Current status and historical trends of seagrass in the Corpus Christi Bay National Estuary Program study area. Publication CCBNEP-20. Texas Natural Resource Conservation Commission, Austin, p 131

    Google Scholar 

  • Purkis SJ (2005) A ‘reef-up’ approach to classifying coral habitats from IKONOS imagery. IEEE Trans Geosci Remote Sens 43:1375–1390

    Google Scholar 

  • Purkis SJ, Graham NAJ, Riegl BM (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs 27:167–178

    Google Scholar 

  • Purkis S, Klemas V (2011) Remote sensing and global environmental change. Wiley-Blackwell, Oxford

    Google Scholar 

  • Purkis SJ, Kenter JAM, Oikonomou EK, Robinson IS (2002) High-resolution ground verification, cluster analysis and optical model of reef substrate coverage on Landsat TM imagery (Red Sea, Egypt). Int J Remote Sens 23:1677–1698

    Google Scholar 

  • Raber GT, Jensen JR, Hodgson ME, Tullis JA, Davis BA, Berglund J (2007) Impact of Lidar nominal post-spacing on DEM accuracy and flood zone delineation. Photogramm Eng Remote Sens 73:793–804

    Google Scholar 

  • Ramsey E, Rangoonwala A (2005) Leaf optical property changes associated with the occurrence of Spartina alterniflora dieback in coastal Louisiana related to remote sensing mapping. Photogramm Eng Remote Sens 71:299–311

    Google Scholar 

  • Ramsey E, Rangoonwala A (2010) Mapping the onset and progression of marsh dieback. In: Wang J (ed) Remote sensing of coastal environment. CRC Press, Boca Raton

    Google Scholar 

  • Rao BRM, Dwivedi RS, Kushwaha SPS, Bhattacharya SN, Anand JB, Dasgupta S (1999) Monitoring the spatial extent of coastal wetlands using ERS-1 SAR data. Int J Remote Sens 20:2509–2517

    Google Scholar 

  • Rasher ME, Weaver W (1990) Basic photo interpretation: a comprehensive approach to interpretation of vertical aerial photography for natural resource applications. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Rosenqvist A, Finlayson CM, Lowry J, Taylor D (2007) The potential of long-wavelength satellite-borne radar to support implementation of the Ramsar Wetland Convention. Aquat Conserv Mar Freshw Ecosyst 17:229–244

    Google Scholar 

  • Rosso PH, Ustin SL, Hastings A (2005) Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data. Int J Remote Sens 26:5169–5191

    Google Scholar 

  • Sabol BM, Melton REJR, Chamberlain R, Doering P, Haunert K (2002) Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries 25:133–141

    Google Scholar 

  • Sallenger AH, Krabill WB, Brock JC, Swift RN, Jansen M, Manizade S, Richmond B, Hampto M, Eslinger D (1999) Airborne laser study quantifies El Niño-induced coastal change. Am Geophys Union EOS Trans 80:89–93

    Google Scholar 

  • Schmid KA, Hadley BC, Wijekoon N (2011) Vertical accuracy and use of topographic LIDAR data in coastal marshes. J Coast Res 27:116–132

    Google Scholar 

  • Schmidt KS, Skidmore KA (2003) Spectral discrimination of vegetation types in a coastal wetland. Remote Sens Environ 85:92–108

    Google Scholar 

  • Schmidt KS, Skidmore AK, Kloosterman EH, Van Oosten H, Kumar L, Janssen JAM (2004) Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm Eng Remote Sens 70:703–716

    Google Scholar 

  • Schweitzer D, Armstrong RA, Posada J (2005) Remote sensing characterization of benthic habitats and submerged vegetation biomass in Los Roques Archipelago National Park, Venezuela. Int J Remote Sens 26:2657–2667

    Google Scholar 

  • Shalaby A, Tateishi R (2007) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr 27:28–41

    Google Scholar 

  • Shan J, Hussain E (2010) Object-based data integration and classification for high-resolution coastal mapping. In: Wang J (ed) Remote sensing of coastal environment. CRC Press, Boca Raton

    Google Scholar 

  • Silva TSF, Costa MPF, Melack JM, Novo EMLM (2008) Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140:131–145

    Google Scholar 

  • Simard M, Fatoyinbo LE, Pinto N (2010) Mangrove canopy 3D structure and ecosystem productivity using active remote sensing. In: Wang J (ed) Remote sensing of coastal environment. CRC Press, Boca Raton

    Google Scholar 

  • Sinclair M (2008) Airborne LiDAR hydrographic survey for homeland security. Sea Technol 49:15–20

    Google Scholar 

  • Stockdon HF, Sallenger AH, List JH, Holman RA (2002) Estimation of shoreline position and change using airborne Lidar topographic data. J Coast Res 18:502–513

    Google Scholar 

  • Stockdon HF, Doran KS, Sallenger AH (2009) Extraction of LiDAR-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes. J Coast Res 35:59–65

    Google Scholar 

  • Stoker JM, Tyler DJ, Turnipseed DP, Van Wilson K, Oimoen MJ (2009) In: Brock and Purkis (eds) Integrating disparate Lidar datasets for a regional storm tide inundation analysis of Hurricane Katrina. J Coast Res 66–72, Special issue 53, Coastal Applications of Airborne Lidar

    Google Scholar 

  • Thieler ER, Danforth WW (1994) Historical shoreline mapping: improving techniques and reducing positioning errors. J Coast Res 10:539–548

    Google Scholar 

  • Thomson AG, Fuller RM, Sparks TH, Yates MG, Eastwood JA (1998) Ground and airborne radiometry over intertidal surfaces: waveband selection for cover classification. Int J Remote Sens 19:1189–1205

    Google Scholar 

  • Thompson RL, Schroeder AJ Jr (2010) High-definition 3-D tools for underwater surveying and inspection. Sea Technol 51:43

    Google Scholar 

  • Tiner RW (1996) Wetlands. In: Manual of photographic interpretation, 2nd ed. American Society for Photogrammetry and Remote Sensing, Falls Church, 2440 p

    Google Scholar 

  • Townsend PA (2000) A quantitative fuzzy approach to assess mapped vegetation classifications for ecological applications. Remote Sens Environ 72:253–267

    Google Scholar 

  • Townsend PA (2002) Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. Int J Remote Sens 23:443–460

    Google Scholar 

  • Townsend P, Walsh S (1998) Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology 21:295–312

    Google Scholar 

  • Töyrä J, Pietroniro A, Martz LW (2001) Multisensor hydrologic assessment of a freshwater wetland. Remote Sens Environ 75:162–173

    Google Scholar 

  • Töyrä J, Pietroniro A, Martz LW, Prowse TD (2002) A multi-sensor approach to wetland flood monitoring. Hydrol Process 16:1569–1581

    Google Scholar 

  • Valta-Hulkkonen K, Pellika P, Tanskanen H, Ustinov A, Sandman O (2003) Digital false color aerial photographs for discrimination of aquatic macrophyte species. Aquat Bot 75:71–88

    Google Scholar 

  • Valta-Hulkkonen K, Kanninen A, Pellikka P (2004) Remote sensing and GIS for detecting changes in the aquatic vegetation of a rehabilitated lake. Int J Remote Sens 25:5745–5758

    Google Scholar 

  • Wabnitz CC, Andrefouet S, Torres-Puliza D, Muller-Karger FE, Kramer PA (2008) Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: applications to conservation and ecology. Remote Sens Environ 112:3455–3467

    Google Scholar 

  • Wang Y (2010) Remote sensing of coastal environments: an overview. In: Wang J (ed) Remote sensing of coastal environments. CRC Press, Boca Raton

    Google Scholar 

  • Wang Y, Christiano M, Traber M (2010) Mapping salt marshes in Jamaica Bay and terrestrial vegetation in Fire Island National Seashore using QuickBird satellite data. In: Wang J (ed) Remote sensing of coastal environments. CRC Press, Boca Raton

    Google Scholar 

  • Wang L, Sousa WP, Gong P (2004) Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int J Remote Sens 25:5655–5668

    Google Scholar 

  • Ward DP, Hamilton SK, Jardine TD, Pettit NE, Tews EK, Olley JM, Bunn SE (2012) Assessing the seasonal dynamics of inundation, turbidity and aquatic vegetation in the Australian wet-dry tropics using optical remote sensing. Ecohydrology. doi:10.1002/eco.1270

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    Google Scholar 

  • Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic lidar to map flood risk from storm-surge events for Charlottetown, Prince Edward island, Canada. Can J Remote Sens 30:64–76

    Google Scholar 

  • West GR, Lillycrop WJ, Pope RW (2001) Utilization of airborne LiDAR bathymetry for rapid environmental assessment. Sea Technol 42:10

    Google Scholar 

  • Williams DJ, Rybicki NB, Lombana AV, O’brien TM, Gomez RB (2003) Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing. Environ Monit Assess 81:383–392

    Google Scholar 

  • Wilson BA, Rashid H (2005) Monitoring the 1997 flood in the Red River Valley using hydrologic regimes and RADARSAT imagery. Can Geogr 49:100–109

    Google Scholar 

  • Wolter PT, Johnston CA, Niemi GJ (2005) Mapping submerged aquatic vegetation in the US Great Lakes using Quickbird satellite data. Int J Remote Sens 26:5255–5274

    Google Scholar 

  • Wozencraft JM, Lillycrop WJ (2003) Airborne coastal mapping, past, present, and future. J Coast Res 38:207–215 (special issue)

    Google Scholar 

  • Wozencraft JM, Millar D (2005) Airborne lidar and integrated technologies for coastal mapping and charting. Marine Technol Soc J 39:27–35

    Google Scholar 

  • Yang X (2009) Remote sensing and geospatial technologies for coastal ecosystem assessment and management. Springer-Verlag, Berlin

    Google Scholar 

  • Yang J, Artigas FJ (2010) Mapping salt marsh vegetation by integrating hyperspectral and LiDAR remote sensing. In: Wang J (ed) Remote sensing of coastal environment. CRC Press, Boca Raton

    Google Scholar 

  • Yang C, Everitt JH, Fletcher RS, Jensen JR, Mausel PW (2009) Mapping black mangrove along the south Texas gulf coast using AISA+ hyperspectral imagery. Photogramm Eng Remote Sens 75:425–436

    Google Scholar 

  • Young SS, Wang CY (2001) Land-cover change analysis of China using global-scale Pathfinder AVHRR Landcover (PAL) data, 1982–92. Int J Remote Sens 22:1457–1477

    Google Scholar 

  • Yuan D, Elvidge CD, Lunetta RS (1998) Survey of multispectral methods for land cover change analysis. In: Lunetta RS, Elvidge CD (eds) Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor Press, Ann Arbor, p 21

    Google Scholar 

  • Zhang X (2010) On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China. Int J Remote Sens 19:11–20

    Google Scholar 

  • Zhou G (2010) Coastal 3D change pattern analysis using LiDAR series data. In: Wang Y (ed) Remote sensing of coastal environments. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Klemas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klemas, V.V. (2014). Remote Sensing of Coastal Ecosystems and Environments. In: Finkl, C., Makowski, C. (eds) Remote Sensing and Modeling. Coastal Research Library, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-06326-3_1

Download citation

Publish with us

Policies and ethics