Skip to main content

Applications of Active Control

  • Chapter
  • First Online:
Structural Motion Engineering
  • 1981 Accesses

Abstract

This chapter introduces active and semi-active control systems. We first describe the fundamental differences between active and passive systems. Then, the importance of feedback, computational requirements, and system modelling for active control are discussed. This material is followed by an introductory example involving dynamic feedback control. We also present several active and semi-active device technologies, as well as advanced mitigation schemes including smart materials and hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Abe, M., & Igusa, T. (1996). Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 198(5), 547–569.

    Article  Google Scholar 

  2. Adhikari, R., & Yamaguchi, H. (1997). Sliding mode control of buildings with ATMD. Earthquake Engineering & Structural Dynamics, 26(4), 409–422.

    Article  Google Scholar 

  3. Agrawal, A., Fujino, Y., & Bhartia, B. (1993). Instability due to time delay and its compensation in active control of structures. Earthquake Engineering & Structural Dynamics, 22(3), 211–224.

    Article  Google Scholar 

  4. Ahlawat, A., & Ramaswamy, A. (2004). Multiobjective optimal fuzzy logic controller driven active and hybrid control systems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 130, 416.

    Article  Google Scholar 

  5. Amaratunga, K., & Williams, J. (1995). Time integration using wavelets. In SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, pp. 894–902. International Society for Optics and Photonics.

    Google Scholar 

  6. Ankireddi, S., & Yang, H. (1996). Simple ATMD control methodology for tall buildings subject to wind loads. Journal of Structural Engineering, 122, 83.

    Article  Google Scholar 

  7. Asher, J. W., & Van Volkinburg, D. R. (1989). Seismic isolation of the usc university hospital. In Seismic Engineering@ sResearch and Practice, pp. 605–614. ASCE.

    Google Scholar 

  8. Avraam, M. T. (2009). MR-fluid brake design and its application to a portable muscular rehabilitation device. PhD thesis, Université Libre de Bruxelle, Bruxelle.

    Google Scholar 

  9. Bachmann, H., & Ammann, W. (1987). Vibrations in structures: induced by man and machines (Vol. 3). IABSE Publisher.

    Google Scholar 

  10. Bélanger, P. (1995). Control engineering: a modern approach. Oxford: Oxford University Press.

    Google Scholar 

  11. Billings, I., & Kirkcaldie, D. (1985). Base isolation of bridges in new zealand. In Proceedings US-NZ Workshop on Seismic Resistance of Highway Bridges, Report, no. 12-1.

    Google Scholar 

  12. Cai, C., Wu, W., & Araujo, M. (2007). Cable vibration control with a TMD-MR damper system: Experimental exploration. Journal of Structural Engineering, 133, 629.

    Article  Google Scholar 

  13. Cao, H., & Li, Q. (2004). New control strategies for active tuned mass damper systems. Computers & Structures, 82(27), 2341–2350.

    Article  MathSciNet  Google Scholar 

  14. Chae, Y., Sause, R., & Ricles, J. (2011). Performance-based seismic design and assessment of structures with magneto-rheological dampers. Tech. Rep. 11-01, ATLSS, Lehigh University, Bethlehem, PA

    Google Scholar 

  15. Chaniotakis, E. (1999). Plasma science and fusion labratory. Private Communication.

    Google Scholar 

  16. Chen, C., & Chen, G. (2004). Shake table tests of a quarter-scale three-storey building model with piezoelectric friction dampers. Structural Control and Health Monitoring, 11(4), 239–257.

    Article  Google Scholar 

  17. Clough, R. W., & Penzien, J. (1993). Dynamics of structures, vol. 634. New York: McGraw-Hill.

    Google Scholar 

  18. Connor, J. J. (2002). Introduction to structural motion control. New York: Prentice Hall.

    Google Scholar 

  19. Connor, J. J., & Faraji, S. (2012). Fundamentals of structural engineering. New York: Springer.

    Google Scholar 

  20. Corporation, K. (1993). Duox—active-passive composite tuned mass damper. Technical Pamphlet 93-82E, Tokyo, Japan.

    Google Scholar 

  21. Crawley, E., & De Luis, J. (1987). Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 25, 10.

    Google Scholar 

  22. Deierlein, G., Krawinkler, H., Ma, X., Eatherton, M., Hajjar, J., Takeuchi, T., Kasai, K., & Midorikawa, M. (2011). Earthquake resilient steel braced frames with controlled rocking and energy dissipating fuses. Steel Construction, 4(3), 171–175.

    Article  Google Scholar 

  23. Den Hartog, J. (1940). Mechanical vibrations. New York: McGraw-Hill.

    MATH  Google Scholar 

  24. Doyle, J., Francis, B., & Tannenbaum, A. (1992). Feedback control theory, vol. 1. New York: Macmillan Publishing.

    Google Scholar 

  25. Durmaz, O., Clark, W., Bennett, D., Paine, J., & Samuelson, M. (2002). Experimental and analytical studies of a novel semi-active piezoelectric coulomb damper. Proceedings of SPIE, vol. 4697, p. 258.

    Article  Google Scholar 

  26. (EPS), E. P. S. (2013). http://www.earthquakeprotection.com/building_mills_peninsula_hospital.html#.

    Google Scholar 

  27. Fajfar, P., & Krawinkler, H. (1997). Seismic Design Methodologies for the Next Generation of Codes: Proceedings of the International Workshop on Seismic Design Methologies for the Next Generation of Codes, Bled, Slovenia, 24–27 Jun 1997. AA Balkema.

    Google Scholar 

  28. Feng, Q., & Shinozuka, M. (1990). Use of a variable damper for hybrid control of bridge response under earthquake. In Proa, US Nat. Workshop on Struct. Control Res.,, USC Pubi. No. CE-9013.

    Google Scholar 

  29. Frahm, H. (1911). Vibrations of bodies, Apr. 18 1911. US Patent 989,958.

    Google Scholar 

  30. Frémond, M. (2012). Shape memory alloys. Phase Change in Mechanics, 67–100.

    Google Scholar 

  31. Fujitani, H., Sodeyama, H., Tomura, T., Hiwatashi, T., Shiozaki, Y., Hata, K., Sunakoda, K., Morishita, S., & Soda, S. (2003). Development of 400kN magnetorheological damper for a real base-isolated building. In Proceedings of SPIE, vol. 5052, p. 265.

    Google Scholar 

  32. Gallegos, C. M. (1998). Motion based design: solution algorithms to the inverse problem with applications to seismic design. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  33. Gao, H., Kwok, K., & Samali, B. (1997). Optimization of tuned liquid column dampers. Engineering structures, 19(6), 476–486.

    Article  Google Scholar 

  34. Gaul, L., Albrecht, H., & Wirnitzer, J. (2001). Damping of structural vibrations using adaptive joint connections and neural control. CISM Courses and Lectures: Smart Structures, 429, 86–97.

    Google Scholar 

  35. Ghisbain, P. (2013). Seismic performance assessment for structural optimization. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  36. Ha, Q., Kwok, N., Nguyen, M., Li, J., & Samali, B. (2008). Mitigation of seismic responses on building structures using MR dampers with Lyapunov-based control. Structural Control and Health Monitoring, 15(4), 604–621.

    Article  Google Scholar 

  37. Hancock tower now to get dampers. In Eng. news record, 11 (1975)

    Google Scholar 

  38. Haskett, T., Breukelman, B., Robinson, J., & Kottelenberg, J. (2004). Tuned mass dampers under excessive structural excitation. Report of the Motioneering Inc. http://www.waterfordmgmt.com/school/Articles/tmd%20article.pdf.

  39. Hidaka, S., Ahn, Y., & Morishita, S. (1999). Adaptive vibration control by a variable-damping dynamic absorber using ER fluid. Journal of Vibration and Acoustics, 121, 373.

    Article  Google Scholar 

  40. Hrovat, D., Barak, P., & Rabins, M. (1983). Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics, 109, 691.

    Article  Google Scholar 

  41. Idelchik, I. E., & Fried, E. (1986). Handbook of hydraulic resistance, Hemisphere Publishing Corporation.

    Google Scholar 

  42. Ikeda, T. (1996). Fundamentals of piezoelectricity., Oxford University Press

    Google Scholar 

  43. Ikeda, Y., Sasaki, K., Sakamoto, M., & Kobori, T. (2001). Active mass driver system as the first application of active structural control. Earthquake Engineering & Structural Dynamics, 30(11), 1575–1595.

    Article  Google Scholar 

  44. Irwin, P., Kilpatrick, J., Robinson, J., & Frisque, A. (2008). Wind and tall buildings: negatives and positives. The Structural Design of Tall and Special Buildings, 17(5), 915–928.

    Article  Google Scholar 

  45. Jackson, C., Wagner, H., & Wasilewski, R. (1972). 55-nitinol-the alloy with a memory: It’s physical metallurgy properties, and applications. nasa sp-5110. NASA Special Publication, 5110.

    Google Scholar 

  46. Jung, H., & Spencer Jr, B. (2003). Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers. Journal of Structural Engineering, 129, 873.

    Article  Google Scholar 

  47. Kannan, S., Uras, H., & Aktan, H. (1995). Active control of building seismic response by energy dissipation. Earthquake Engineering & Structural Dynamics, 24(5), 747–759.

    Article  Google Scholar 

  48. Karavasilis, T., Sause, R., & Ricles, J. (2011). Seismic design and evaluation of steel moment-resisting frames with compressed elastomer dampers. Earthquake Engineering & Structural Dynamics, 41(3), 411–429.

    Article  Google Scholar 

  49. Kaynia, A., Biggs, J., & Veneziano, D. (1981). Seismic effectiveness of tuned mass dampers. Journal of the Structural Division, 107(8), 1465–1484.

    Google Scholar 

  50. Kelly, J. M., & Naeim, F. (1999). Design of seismic isolated structures. From theory to practice. Nueva York, John Wiley & Sons.

    Google Scholar 

  51. Kim, H., & Adeli, H. (2005). Wind-induced motion control of 76-story benchmark building using the hybrid damper-TLCD system. Journal of structural engineering, 131, 1794.

    Article  Google Scholar 

  52. Kitamura, H., Fujita, T., Teramoto, T., & Kihara, H. (1988). Design and analysis of a tower structure with a tuned mass damper. In Proceedings 9th World Conference of Earthquake Engineering, Tokyo-Kyoto, Japan, vol. 8, pp. 415–420.

    Google Scholar 

  53. Koo, J., Ahmadian, M., & Elahinia, M. (2005). Semi-active controller dynamics in a magneto-rheological tuned vibration absorber. In Proceedings of SPIE, vol. 5760, p. 69.

    Google Scholar 

  54. Koo, J., Ahmadian, M., Setareh, M., & Murray, T. (2004) In search of suitable control methods for semi-active tuned vibration absorbers. Journal of Vibration and Control, 10(2), 163.

    Article  MATH  Google Scholar 

  55. Kurata, N., Kobori, T., Takahashi, M., Niwa, N., & Kurino, H. (1994). Shaking table experiments of active variable damping system. In Proa, First World Conf. on Struct. Control, TP2, pp. 108–127.

    Google Scholar 

  56. Laflamme, S. (2011). Control of large-scale structures with large uncertainties. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  57. Laflamme, S., Slotine, J. E., & Connor, J. (2012). Self-organizing input space for control of structures. Smart Materials and Structures, 21(11), 115015.

    Article  Google Scholar 

  58. Laflamme, S., Taylor, D., Abdellaoui-Maane, M., & Connor, J. (2012). Modified friction device for control of large-scale systems. Structural Control & Health Monitoring, 19(4), 548–564.

    Article  Google Scholar 

  59. Lead hula-hoops stabilize antenna. In Engineering News Record. July 22 1976, p. 10.

    Google Scholar 

  60. Lee, H., Yang, G., Jung, H., Spencer, B., & Lee, I. (2006). Semi-active neurocontrol of a base-isolated benchmark structure. Structural Control and Health Monitoring, 13(2–3), 682–692.

    Article  Google Scholar 

  61. Li, H., & Chang, Z. (2008). Semi-active control for eccentric structures with MR damper based on hybrid intelligent algorithm. The Structural Design of Tall and Special Buildings, 17(1), 167–180.

    Article  Google Scholar 

  62. Lin, C., Lu, L., Lin, G., & Yang, T. (2010). Vibration control of seismic structures using semi-active friction multiple tuned mass dampers. Engineering Structures, 32(10), 3404–3417.

    Article  Google Scholar 

  63. Lin, P., & Loh, C. (2008). Semi-active control of floor isolation system using MR-damper. In Proceedings of SPIE, vol. 6932, p. 69320U.

    Google Scholar 

  64. Lindh, C., Laflamme, S., & Connor, J. (2010). Effects of damping device nonlinearity on the performance of semiactive tuned mass dampers. In 5th World Conference on Structural Control and Monitoring, vol. 274, pp. 1–13.

    Google Scholar 

  65. Lu, K.-C., Lo, C.-H., Yang, J., & Lin, P.-Y. (2008). Decentralized sliding model control of buildings using MR-dampers. In Proceedings of SPIE, vol. 6932, p. 69320V.

    Google Scholar 

  66. Lu, L., Lin, G., & Kuo, T. (2008). Stiffness controllable isolation system for near-fault seismic isolation. Engineering Structures, 30(3), 747–765.

    Article  Google Scholar 

  67. Lund, R. (1979). Active damping of large structures in winds. In ASCE Convention (Boston, MA, 1979).

    Google Scholar 

  68. Mackriell, L., Kwok, K., & Samali, B. (1997). Critical mode control of a wind-loaded tall building using an active tuned mass damper. Engineering Structures, 19(10), 834–842.

    Article  Google Scholar 

  69. Madhekar, S., & Jangid, R. (2009). Variable dampers for earthquake protection of benchmark highway bridges. Smart Materials and Structures, 18, 115011.

    Article  Google Scholar 

  70. Mayes, R., Kelly, T., & Jones, L. (1990). Seismic isolation: An economic alternative for the seismic design and rehabilitation of buildings and bridges. Civil Engineering Practice, 5(1), 7–30.

    Google Scholar 

  71. Mayes, R., Sveinsson, B., & Buckle, I. (1987). Seismic isolation: An economic rehabilitation alternative. Construction Specifier, 76–92.

    Google Scholar 

  72. McNamara, R. (1977). Tuned mass dampers for buildings. Journal of the Structural Division, 103(9), 1785–1798.

    Google Scholar 

  73. Moore, J. (1995). Advances in actuators. Taylor & Francis.

    Google Scholar 

  74. Myers, D. (1989). Softening the jolt of the big one. Los Angeles Times, Real Estate Section.

    Google Scholar 

  75. Nagarajaiah, S., & Varadarajan, N. (2000). Novel semi-active variable stiffness tuned mass damper with real time tuning capability. In Proceeding of 13th Engineering Mechanics Conference.

    Google Scholar 

  76. Nagase, T., & Hisatoku, T. (1990). Tuned pendulum mass damper using ice thermal storage tank installed in crystal tower. Private Communication.

    Google Scholar 

  77. Narasimhan, S., & Nagarajaiah, S. (2005). A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems. Engineering Structures, 27(4), 514–523.

    Article  Google Scholar 

  78. Nitsche, R., & Gaul, L. (2005). Smart friction driven systems. Smart Materials and Structures, 14, 231–236.

    Article  Google Scholar 

  79. Ogata, K. (1997), Modern control engineering (3rd ed.) Prentice-Hall.

    Google Scholar 

  80. Ohashi, M., Mochizuki, H., Yamaguchi, T., Hagiwara, Y., Kuwamura, H., Okamura, Y., Tomita, Y., Komatsu, N., & Funatsu, Y. (1990). Development of new steel plates for building structural use. Nippon steel technical report. Overseas, 44, 8–20.

    Google Scholar 

  81. Ormondroyd, J. (1928). Theory of the dynamic vibration absorber. Transaction of the ASME, 50, 9–22.

    Google Scholar 

  82. Otsuka, K., & Wayman, C. (1999) Shape memory materials. Cambridge: Cambridge University Press.

    Google Scholar 

  83. Patten, W., & Sack, R. (1994). Semiactive control of civil engineering structures. In American Control Conference, 1994, vol. 1, pp. 1078–1082. IEEE.

    Google Scholar 

  84. Petersen, N. (1980). Design of large scale tuned mass dampers. Structural Control, 581–596.

    Google Scholar 

  85. Qu, W., Chen, Z., & Xu, Y. (2001). Dynamic analysis of wind-excited truss tower with friction dampers. Computers & Structures, 79(32), 2817–2831.

    Article  Google Scholar 

  86. Randall, S., Halsted, D., & Taylor, D. (1978). Optimum vibration absorbers for linear damped systems. Transaction of the ASME, 130, 908–913.

    Google Scholar 

  87. Reaveley, L., Mayes, R., & Sveinsson, B. (1989). Seismic isolation of a computer/flight simulator research and development facility. In Proceedings of Seismic Engineering, ASCE Structures Congress.

    Google Scholar 

  88. Reiterer, M., & Ziegler, F. (2011). Bi-axial seismic activation of civil engineering structures equipped with tuned liquid column dampers. Journal of Seismology and Earthquake Engineering, 7, 1.

    Google Scholar 

  89. Sakamoto, M., Kobori, T., Yamada, T., & Takahashi, M. (1994). Practical applications of active and hybrid response control systems and their verification by earthquake and strong wind observations. In Proc, First World Conf. on Struct. Control, WP2, pp. 90–99.

    Google Scholar 

  90. Sarkisian, M., Lee, P., Long, E., Boswell, C. K., Lynn, A., Reitherman, R., & et al. (2011). The materials of the cathedral of christ the light. In AEI 2011: Building integration solutions. Proceedings of the 2011 Architectual Engineering National Conference, Oakland, California, USA, 30 March-2 April, 2011., pp. 327–334. American Society of Civil Engineers (ASCE).

    Google Scholar 

  91. Shinozuka, M., Constantinou, M., & Ghanem, R. (1992). Passive and active fluid dampers in structural applications. In Proc, US/China/Japan Workshop on Struct. Control, pp. 507–516.

    Google Scholar 

  92. Shook, D., Lin, P., Lin, T., & Roschke, P. (2007). A comparative study in the semi-active control of isolated structures. Smart Materials and Structures, 16, 1433.

    Article  Google Scholar 

  93. Slotine, J., & Coetsee, J. (1986). Adaptive sliding controller synthesis for non-linear systems. International Journal of Control, 43(6), 1631–1651.

    Article  MATH  Google Scholar 

  94. Snowdon, J. C. (1979). Vibration isolation: use and characterization. The Journal of the Acoustical Society of America, 66, 1245.

    Article  Google Scholar 

  95. Spencer, B., Dyke, S., Sain, M., & Carlson, J. (1997). Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 123(3), 230–238.

    Article  Google Scholar 

  96. Spencer Jr, B., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering, 129, 845.

    Article  Google Scholar 

  97. Spencer Jr, B., Yang, G., Carlson, J., & Sain, M. (1998). Smart dampers for seismic protection of structures: a full-scale study. In Proceedings of the Second World Conference on Structural Control (2WCSC), Kyoto, Japan, vol. 1, pp. 417–426.

    Google Scholar 

  98. Stanway, R., Sproston, J. L., & Stevens, N. G. (1987). Non-linear modeling of an electrorheological vibration damper. Journal of Electrostatics, 20, 167–184.

    Article  Google Scholar 

  99. Strang, G. (2003). Introduction to linear algebra. Wellesley Cambridge Press.

    Google Scholar 

  100. Syngellakis, S. (2013). Retrofitting of heritage structures against earthquakes. WIT Press.

    Google Scholar 

  101. Taranath, B. (1988). Structural analysis and design of tall buildings, vol. 100. New York: McGraw-Hill.

    Google Scholar 

  102. Terasawa, T., Sakai, C., Ohmori, H., & Sano, A. (2004). Adaptive identification of MR damper for vibration control. In 43rd IEEE Conference on Decision and Control, 2004. CDC, pp. 2297–2303.

    Google Scholar 

  103. Tsai, H.-C., & Lin, G.-C. (1993). Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthquake Engineering & Structural Dynamics, 22(11), 957–973.

    Article  Google Scholar 

  104. Tsai, K., Chen, H., Hong, C., & Su, Y. (1993). Design of steel triangular plate energy absorbers for earthquake resistant construction. Earthquake Spectra, 9(3), 517–550.

    Article  Google Scholar 

  105. Tu, J., & Qu, W. (2008). An experimental study on semi-active seismic response control of a large-span building on top of ship lift towers. Journal of Vibration and Control, 14(7), 1055.

    Article  Google Scholar 

  106. Tuned mass dampers steady sway of skyscrapers in wind. In Engineering News Record. August 18 1975, pp. 28–29.

    Google Scholar 

  107. Wada, A., Huang, Y.-H., & Iwata, M. (2000). Passive damping technology for buildings in japan. Progress in Structural Engineering and Materials, 2(3), 335–350.

    Article  Google Scholar 

  108. Walters, M., & Elsesser, E. (1988). Base isolation of the existing city and county building in salt lake city. In Proceedings of a Seminar on Base Isolation and Passive Energy Dissipation, Applied Technology Council, Report No. 17

    Google Scholar 

  109. Warburton, G. (1981). Optimum absorber parameters for minimizing vibration response. Earthquake Engineering & Structural Dynamics, 9(3), 251–262.

    Article  Google Scholar 

  110. Warburton, G. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381–401.

    Article  Google Scholar 

  111. Warburton, G., & Ayorinde, E. (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3), 197–217.

    Article  Google Scholar 

  112. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., & Fujimoto, M. (1988). Properties of brace encased in buckling-restraining concrete and steel tube. In Proceedings of Ninth World Conference on Earthquake Engineering, vol. 4, pp. 719–724.

    Google Scholar 

  113. Wayman, C., & Shimizu, K. (1972). The shape memory (marmem) effect in alloys. Metal Science, 6(1), 175–183.

    Article  Google Scholar 

  114. Wikipedia. (2013). http://en.wikipedia.org/wiki/file:uscuh.jpg, October 2013, http://en.wikipedia.org/wiki/Keck_School_of_Medicine_of_USC#mediaviewer/File:USCUH.jpg.

  115. Wikipedia. (2013). http://en.wikipedia.org/wiki/file:lbva.jpg, 2013.

  116. Wikipedia. (2013). http://en.wikipedia.org/wiki/file:salt_lake_city_county_bldg.jpg, 2013.

  117. Wikipedia. (2013). http://en.wikipedia.org/wiki/file:san_francisco_city_hall_september_2013_panorama_3.jpg, 2013.

  118. Wikipedia. (2013). http://en.wikipedia.org/wiki/one_wall_centre, 2013.

  119. Wikipedia. (2013). http://en.wikipedia.org/wiki/torre_mayor, 2013.

  120. Wongprasert, N., & Symans, M. (2005). Numerical evaluation of adaptive base-isolated structures subjected to earthquake ground motions. Journal of Engineering Mechanics, 131, 109.

    Article  Google Scholar 

  121. Wu, B., Wang, Q., Shi, P., Ou, J., & Guan, X. (2006). Real-time substructure test of JZ 20-2 NW offshore platform with semi-active MR dampers. In ICEE 2006: 4th Intenrational Conference on Earthquake Engineering, National Center for Research on Earthquake Engineering.

    Google Scholar 

  122. Wu, J., Chang, C., & Lin, Y. (2009). Optimal designs for non-uniform tuned liquid column dampers in horizontal motion. Journal of Sound and Vibration, 326(1), 104–122.

    Article  Google Scholar 

  123. Wu, J.-C., Shih, M.-H., Lin, Y.-Y., & Shen, Y.-C. (2005). Design guidelines for tuned liquid column damper for structures responding to wind. Engineering Structures, 27(13), 1893–1905.

    Article  Google Scholar 

  124. Wu, W., Cai, C., & Chen, S. (2004). Experiments on reduction of cable vibration using MR dampers. In Proceedings of 17th ASCE Engineering Mechanics Conference.

    Google Scholar 

  125. Xu, Y., & Ng, C. (2008). Seismic protection of a building complex using variable friction damper: experimental investigation. Journal of Engineering Mechanics, 134, 637.

    Article  Google Scholar 

  126. Yalla, S., & Kareem, A. (2000). Optimum absorber parameters for tuned liquid column dampers. Journal of Structural Engineering, 126(8), 906–915.

    Article  Google Scholar 

  127. Yang, J., & Agrawal, A. (2002). Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes. Engineering Structures, 24(3), 271–280.

    Article  Google Scholar 

  128. Yang, J. N., & Agrawal, A. K. (2000). Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes Engineering Structures, vol. 24 (pp. 271–280). Elsevier.

    Google Scholar 

  129. Zemp, R., de la Llera, J. C., & Almazán, J. L. (2011). Tall building vibration control using a tm-mr damper assembly. Earthquake Engineering & Structural Dynamics, 40(3), 339–354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Connor, J., Laflamme, S. (2014). Applications of Active Control. In: Structural Motion Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-06281-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06281-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06280-8

  • Online ISBN: 978-3-319-06281-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics