Skip to main content

Correlation Between Spin Entanglement and the Spin Relaxation Time

  • Chapter
  • First Online:
Simulation Studies of Recombination Kinetics and Spin Dynamics in Radiation Chemistry

Part of the book series: Springer Theses ((Springer Theses))

  • 532 Accesses

Abstract

The track structure created by radiolysis depends on many factors such as the type of ionising radiation used and the initial kinetic energy of this radiation. As such radiolysis gives rise to a complicated spatial arrangement. During the passage of the radiation several radical ion pairs are born in the same spatial region, which can either undergo geminate or cross-recombination. It is considered that all geminate pairs are initially singlet-correlated (optical approximation), although the production of triplet ion-pairs is also possible through low-energy electron ionisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The acronym ERP is used in this chapter to avoid any confusion with the acronym EPR (electron paramagnetic resonance).

  2. 2.

    This formula assumes that fluorescence occurs almost instantaneously and can therefore only be used in the tail of the recombination probability distribution.

  3. 3.

    In the semiclassical approximation the electron spin on each radical is treated quantum mechanically, whilst the nuclear spins are treated classically. The unpaired electron precesses about the static field and the resultant of the nuclear spins.

  4. 4.

    This assumption will be utilised to simplify the computational model.

  5. 5.

    This method does have the disadvantage that the coherences between the triplet spin states are not retained.

  6. 6.

    In this simulation spin relaxation was modelled to a uniform distribution.

  7. 7.

    It is important to note that the IRT algorithm does overestimate cross-recombination when the spur structure is in a linear arrangement.

  8. 8.

    Experimental and simulated TR MFE curve shown were extracted from reference [34].

  9. 9.

    Experimental and simulated TR MFE curve shown were extracted from reference [34].

References

  1. B. Brocklehurst, Radiat. Phys. Chem. 50, 213 (1997)

    Article  CAS  Google Scholar 

  2. J.A. LaVerne, B. Brocklehurst, Radiat. Phys. Chem. 47, 71 (1996)

    Article  CAS  Google Scholar 

  3. B. Brocklehurst, Int. Rev. Phys. Chem. 4, 279 (1985)

    Article  CAS  Google Scholar 

  4. D. Bohm, Quantum Theory (Prentice-Hall, New Jersey, 1951)

    Google Scholar 

  5. J. Klein, R. Voltz, Phys. Rev. Lett. 36, 1214 (1976)

    Article  CAS  Google Scholar 

  6. B. Brocklehurst, Radiat. Phys. Chem. 21, 577 (1983)

    Google Scholar 

  7. V.A. Bagryansky, V.I. Borovkov, Y.N. Molin, Russ. Chem. Rev. 76, 493 (2007)

    Article  CAS  Google Scholar 

  8. D.V. Stass, B.M. Tadjikov, Y.N. Molin, Chem. Phys. Letts. 235, 511 (1995)

    Article  CAS  Google Scholar 

  9. V.A. Bagryansky, O.M. Usov, V.I. Borokov, Chem. Phys. 255, 237 (2000)

    Article  CAS  Google Scholar 

  10. K. Schulten, P.G. Wolynes, J. Chem. Phys. 68, 3292 (1978)

    Article  CAS  Google Scholar 

  11. E.W. Knapp, K. Schulten, J. Chem. Phys. 71, 1878 (1979)

    Article  CAS  Google Scholar 

  12. V.I. Borovkov, Y.N. Molin, Phys. Chem. 396, 123 (2004)

    CAS  Google Scholar 

  13. D.M. Bartels, R.G. Lawler, A.D. Trifunac, J. Chem. Phys. 83, 2686 (1985)

    Google Scholar 

  14. B.M. Tadjikov, D.V. Stass, Y.N. Molin, J. Phys. Chem. A. 101, 377 (1997)

    Article  CAS  Google Scholar 

  15. V.I. Borovkov, Y.N. Molin, Phys. Chem. Chem. Phys. 6, 2119 (2004)

    Article  CAS  Google Scholar 

  16. V.I. Borovkov, Y.N. Molin, Chem. Phys. Lett. 398, 422 (2004)

    Article  CAS  Google Scholar 

  17. M.R. Das, S.B. Wagner, J.H. Freed, J. Chem. Phys. 52, 5404 (1970)

    Article  CAS  Google Scholar 

  18. J.H. Freed, R.G. Kooser, J. Chem. Phys. 49, 4715 (1968)

    Article  CAS  Google Scholar 

  19. H.M. McConnell, J. Chem. Phys. 34, 13 (1961)

    Article  CAS  Google Scholar 

  20. D. Kivelson, J. Chem. Phys. 34, 13 (1966)

    Google Scholar 

  21. P.V. Schastnev, L.N. Shchegoleva, Molecular Distortions in Ionic and Excited States (CRC, Boca Raton, 1995)

    Google Scholar 

  22. A. Lund, M. Lindgren, S. Lunell, J. Maruani, Molecules in Physics, Chemistry and Biology (Kluwer, Dordrecht, 1989)

    Google Scholar 

  23. V.I. Melekhov, O.A. Anisimov, L. Sjoqvist, A. Lund, Chem. Phys. Lett. 174, 95 (1990)

    Article  CAS  Google Scholar 

  24. B. Brocklehurst, Faraday Discuss. Chem. Soc. 78, 303 (1984)

    Article  CAS  Google Scholar 

  25. L.V. Il’ichov, S.V. Anishchik, J. Phys. B. Mol. Opt. Phys. 42, 1 (2009)

    Google Scholar 

  26. A. Mozumder, Fundamentals of Radiation Chemistry (Academic Press, London, 1999)

    Google Scholar 

  27. M. Wojcik, W.M. Bartczak, J. Kroh, Radiat. Phys. Chem. 39, 65 (1992)

    CAS  Google Scholar 

  28. W.M. Bartczak, A. Hummel, Radiat. Phys. Chem. 27, 71 (1996)

    Google Scholar 

  29. O.A. Anisimov, V.M. Grigoryants, Y.N. Molin, Chem. Phys. Lett. 74, 15 (1980)

    Article  CAS  Google Scholar 

  30. A. Saeki, T. Kozawa, Y. Yoshida, S. Tagawa, Radiat. Phys. Chem. 60, 319 (2001)

    Article  CAS  Google Scholar 

  31. V.I. Borovkov, S.V. Anishchik, O.A. Anisimov, Radiat. Phys. Chem. 67, 639 (2003)

    Article  CAS  Google Scholar 

  32. R. Mehnert, O. Brede, W. Naumann, R. Herman, Radiat. Phys. Chem. 32, 325 (1988)

    CAS  Google Scholar 

  33. V.I. Borovkov, S.V. Anishchik, O.A. Anisimov, Chem. Phys. Lett. 270, 327 (1997)

    Article  CAS  Google Scholar 

  34. V.I. Borovkov, K.A. Velizhanin, Radiat. Phys. Chem. 76, 998 (2007)

    Article  CAS  Google Scholar 

  35. V.I. Borovkov, K.A. Velizhanin, Radiat. Phys. Chem. 76, 988 (2007)

    Article  CAS  Google Scholar 

  36. V.I. Borovkov, High Energy Chem. 42, 113 (2008)

    Article  CAS  Google Scholar 

  37. B. Brocklehurst, J. Chem. Soc. Faraday Trans. 88, 167 (1992)

    Article  CAS  Google Scholar 

  38. B. Brocklehurst, J. Chem. Soc. Faraday Trans. 88, 2823 (1992)

    Article  CAS  Google Scholar 

  39. A.K. Pikaev, Modern Radiation Chemistry: Radiolysis of Gases and Liquids (Nauka, Moscow, 1986)

    Google Scholar 

  40. F.P. Schwarz, D. Smith, S.G. Lias, P.J. Ausloos, Chem. Phys. 75, 3800 (1981)

    Article  CAS  Google Scholar 

  41. G. Grampp, S. Landgraf, J. Rasmussen, J. Chem. Soc. Perkin Trans. 2, 1897 (1999)

    Article  CAS  Google Scholar 

  42. J. Telo, G. Grampp, M.C.B.L. Shohoji, Phys. Chem. Chem. Phys. 1, 99 (1999)

    Article  CAS  Google Scholar 

  43. S.D. Traytak, M. Tachiya, J. Chem. Phys. 107, 9907 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, A. (2014). Correlation Between Spin Entanglement and the Spin Relaxation Time. In: Simulation Studies of Recombination Kinetics and Spin Dynamics in Radiation Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06272-3_8

Download citation

Publish with us

Policies and ethics