Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 515 Accesses

Abstract

Reactive products play an important part in radiation chemistry and pose a challenging problem in their theoretical modelling within the IRT framework. This is because in IRT the diffusive trajectories are not tracked and as result the distance of the newly formed product to the remaining reactants is not known. This information is needed in the IRT in order to generate a new reaction time from a suitable marginal distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Results are not reported here for the P recombination yield.

  2. 2.

    This spatial configuration is more realistic for H\(^{+}\), OH\(^{-}\) and e\(^{-}_{\text {aq}}\) following the photolysis of water.

  3. 3.

    Derivation shown in Sect. A.1 of the Appendix.

  4. 4.

    Using the free diffusion approach.

References

  1. L. Devroye, Non-uniform Random Variate Generation (Springer, New York, 1986)

    Google Scholar 

  2. L.M. Dorfman, D.E. Adams, Reactivity of the Hydroxyl Radical in Aqueous Solution (National Bureau of Standards, Washington, 1972)

    Google Scholar 

  3. A.J. Elliot, D.R. McCracken, G.V. Buxton, N.D. Wood, J. Chem. Soc. Faraday. Trans 86, 1539 (1990)

    Article  CAS  Google Scholar 

  4. T. Ichino, R.W. Fessenden, J. Phys. Chem. A 111, 2527 (2007)

    Article  CAS  Google Scholar 

  5. S.P. Mezyk, K.P. Madden, J. Phys. Chem. 103, 235 (1998)

    Article  Google Scholar 

  6. N.J.B. Green, M.J. Pilling, S.M. Pimblott, P. Clifford, J. Phys. Chem. 94, 251 (1990)

    Article  CAS  Google Scholar 

  7. E.J. Anbar, The Hydrated Electron (Wiley, New York, 1970)

    Google Scholar 

  8. B.D. Ripley, Int. Statist. Rev. 51, 301 (1983)

    Article  Google Scholar 

  9. P. Clifford, N.J.B. Green, M.J. Pilling, S.M. Pimblott, J. Phys. Chem. 91, 4417 (1987)

    Article  CAS  Google Scholar 

  10. N.J.B. Green, Chem. Phys. Lett. 107, 485 (1984)

    Article  CAS  Google Scholar 

  11. S.M. Pimblott, J.A. LaVerne, J. Phys. Chem. 101, 5828 (1997)

    Article  CAS  Google Scholar 

  12. P.M. Hare, E.A. Price, D.M. Bartels, J. Phys. Chem. A. 112, 6800 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, A. (2014). Reactive Products: New IRT Algorithm. In: Simulation Studies of Recombination Kinetics and Spin Dynamics in Radiation Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06272-3_6

Download citation

Publish with us

Policies and ethics