Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 542 Accesses

Abstract

In photochemistry absorption of a photon gives a single radical pair (known as a G-pair) whose spins are correlated. However, in radiation chemistry the situation becomes much more complicated. A spur results from a single ionisation event in which both the energy and momentum is transferred from a high energy electron (or from other types of radiation) to an electron on the absorbing medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The amount of mixing between these states can be calculated using second order perturbation theory.

  2. 2.

    Valid for this chemical system because anisotropic contributions are averaged by the rapid molecular tumbling.

  3. 3.

    The nuclear configuration has been restricted to the \(|+\rangle \) spin state for simplicity.

  4. 4.

    In the interaction representation the operator \(\hat{A}_{I}\) can be expressed in terms of the Schr\(\ddot{\text {o}}\)dinger representation (\(\hat{A}\)) as \(\hat{A}_{I}(t) = U\hat{A}(t)U^{-1}\).

  5. 5.

    Assuming \(J < 0\) where the doublet states are lower in energy than the quartet states.

  6. 6.

    It is assumed that the nuclear gyromagnetic ratio \(\gamma _{\text {p}} < 0.\)

  7. 7.

    Nucleus \(p\) and \(i\) are located on the same radical, but nucleus \(k\) is on the other radical.

  8. 8.

    Subscript R is used to denote the spin on R\(^{\cdot }\).

  9. 9.

    Assuming the \(T_{\pm 1}\) states to be inaccessible.

  10. 10.

    In the semiclassical approximation the electron spin on each radical is treated quantum mechanically, whilst the nuclear spins are treated classically. The unpaired electron precesses about the static field and the resultant of the nuclear spins.

References

  1. B. Brocklehurst, Int. Rev. Phys. Chem. 4, 279 (1985)

    Article  CAS  Google Scholar 

  2. J.L. Magee, M. Burton, J.S. Kirby-Smith, Comparative Effects in Radiation (Wiley, New York, 1960)

    Google Scholar 

  3. H.A. Schwarz, J. Phys. Chem. 73, 1928 (1969)

    Article  CAS  Google Scholar 

  4. W.G. Burns, H.E. Sims, J.A. Goodall, Radiat. Phys. Chem. 23, 143 (1984)

    CAS  Google Scholar 

  5. C.N. Trumbore, D.R. Short, J.E. Fanning, H. Olsen, J. Phys. Chem. 82, 1539 (1990)

    Google Scholar 

  6. L.T. Muus, P.W. Atkins, K.A. McLauchlan, J.B. Pedersen, Chemically Induced Magnetic Polarisation (Reidel, Dordrecht, 1977)

    Book  Google Scholar 

  7. J.B. Pedersen, J.H. Freed, J. Chem. Phys. 58, 2746 (1973)

    Article  Google Scholar 

  8. J.B. Pedersen, J.H. Freed, Chem. Phys. Lett. 59, 2869 (1973)

    CAS  Google Scholar 

  9. G.T. Evans, P.D. Fleming, R.G. Lawler, J. Chem. Phys. 58, 2071 (1973)

    Article  CAS  Google Scholar 

  10. R.G. Saifutdinov, L.I. Larina, T.I. Vakul’skaya, M.G. Voronkov, Electron Paramagnetic Resonance in Biochemistry and Medicine (Springer, New York, 2001)

    Google Scholar 

  11. B. Brocklehurst, J. Chem. Soc. Faraday Trans. II 72, 1869 (1976)

    Article  CAS  Google Scholar 

  12. V.A. Bagryansky, V.I. Borokov, Y.N. Molin, Chem. Phys. 255, 237 (2000)

    Article  CAS  Google Scholar 

  13. H. Hayashi, Introduction to Dynamic Spin Chemistry (World Scientific Publishing Co Pte Ltd, Singapore, 2004)

    Book  Google Scholar 

  14. F.J.J.D. Kanter, R. Kaptein, R.A.V. Santen, Chem. Phys. Lett. 45, 575 (1977)

    Article  Google Scholar 

  15. F.J.J.D. Kanter, T.A. Hollander, A.H. Huizer, R. Kaptein, Mol. Phys. 34, 857 (1977)

    Article  Google Scholar 

  16. F. Bloch, Phys. Rev. 70, 460 (1946)

    Article  CAS  Google Scholar 

  17. I. Solomon, Phys. Rev. 99, 559 (1955)

    Article  CAS  Google Scholar 

  18. F. Bloch, Phys. Rev. 102, 135 (1956)

    Article  Google Scholar 

  19. R.K. Wangsness, F. Bloch, Phys. Rev. 89, 728 (1953)

    Article  CAS  Google Scholar 

  20. A.G. Redfield, Relaxation Theory, Density Matrix Formalism. Encyclopedia of Nuclear Magnetic Resonance (Wiley, Chichester, 1996)

    Google Scholar 

  21. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

    Google Scholar 

  22. A.G. Redfield, Advan. Magn. Reson. 1, 1 (1966)

    Google Scholar 

  23. E. Hahn, Phys. Rev. 80, 580 (1950)

    Article  Google Scholar 

  24. T.D.W. Claridge, High Resolution NMR Techniques in Organic Chemistry (Elsevier, Oxford, 2004)

    Google Scholar 

  25. K.D. Sattlet, Nanomedicine and Nanorobotics (CRC Press, Boca Raton, 2010)

    Google Scholar 

  26. R. Kaptein, L.J. Oosterhoff, Chem. Phys. Lett. 4, 195 (1969)

    Article  CAS  Google Scholar 

  27. G.L. Closs, J. Amer. Chem. Soc. 91, 4552 (1969)

    Article  CAS  Google Scholar 

  28. H.J. Werner, K. Schulten, A. Weller, Biochim. Biophys. Acta 502, 255 (1978)

    Article  CAS  Google Scholar 

  29. R. Haberkorn, M.E. Michel-Beyerle, J. Biophys. 26, 489 (1979)

    Article  CAS  Google Scholar 

  30. C. Blattler, F. Jent, H. Paul, Chem. Phys. Lett. 166, 375 (1990)

    Article  Google Scholar 

  31. K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, Spin Polarisation and Magnetic Field Effects in Radical Reactions (Elsevier, Amsterdam, 1984)

    Google Scholar 

  32. A.P. Lepley, G.L. Closs, Chemically Induced Dynaic Nuclear Polarisation (Wiley-Interscience, New York, 1973)

    Google Scholar 

  33. R. Kaptein, J. Amer. Chem. Soc. 94, 6251 (1972)

    Article  CAS  Google Scholar 

  34. R. Kaptein, Chem. Commun. 432, 732 (1971)

    Article  Google Scholar 

  35. B. Brocklehurst, Int. Rev. Phys. Chem. 4, 279 (1985)

    Article  CAS  Google Scholar 

  36. P.W. Atkins, G.T. Evans, Chem. Phys. Lett. 25, 108 (1974)

    Article  CAS  Google Scholar 

  37. S.K. Wong, D.A. Hutchinson, J.K.S. Wan, J. Chem. Phys. 58, 985 (1973)

    Article  CAS  Google Scholar 

  38. H.F. Hameks, N.J. Oosterhoof, Mol. Phys. 1, 358 (1958)

    Article  Google Scholar 

  39. J.H. van der Waals, W.G. van Dorp, T.J. Schaafsma, Electron Spin Resonance of Porphyrin Excited States (Academic Press, New York, 1979)

    Google Scholar 

  40. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramgagnetic Resonance (Oxford University Press, Oxford, 2001)

    Google Scholar 

  41. U.E. Steiner, T. Ulrich, Chem. Rev. 89, 51 (1989)

    Article  CAS  Google Scholar 

  42. H. Staerk, R. Treichel, A. Weller, Chem. Phys. Lett. 96, 28 (1983)

    Article  CAS  Google Scholar 

  43. D.N. Nath, M. Chowdhury, Chem. Phys. Lett. 109, 13 (1984)

    Article  CAS  Google Scholar 

  44. K. Schulten, H. Staerk, A. Weller, H.J. Werner, B. Nickel, Z. Phys. Chem. 101, 371 (1976)

    Article  CAS  Google Scholar 

  45. A. Weller, H. Staerk, R. Treichel, Faraday Discuss. Chem. Soc. 78, 271 (1984)

    Article  CAS  Google Scholar 

  46. S.N. Batchelor, C.W.M. Kay, K.A. McLauchlan, I.A. Shkrob, J. Phys. Chem. 97, 13250 (1993)

    Article  CAS  Google Scholar 

  47. H. Fischer, Chem. Phys. Lett. 100, 255 (1983)

    Article  CAS  Google Scholar 

  48. C.A. Hamilton, J.P. Hewitt, K.A. McLauchlan, U.E. Steiner, Mol. Phys. 65, 423 (1988)

    Article  CAS  Google Scholar 

  49. A. Shkrob, V.F. Tarasov, A.L. Buchachenko, Chem. Phys. 153, 443 (1991)

    Article  Google Scholar 

  50. D.V. Stass, N.N. Lukzen, B.M. Tadjikov, Y.N. Molin, Chem. Phys. Lett. 233, 444 (1995)

    Article  CAS  Google Scholar 

  51. V.O. Saik, A.E. Ostafin, S. Lipsky, J. Chem. Phys 103, 7347 (1995)

    Article  CAS  Google Scholar 

  52. O.A. Anisimov, V.L. Bizyaev, N.N. Lukzen, V.M. Grigoryantz, Y.N. Molin, Chem. Phys. Lett. 101, 131 (1983)

    Article  CAS  Google Scholar 

  53. A.V. Veselov, V.I. Melekhov, O.A. Anisimov, Y.N. Molin, Chem. Phys. Lett. 136, 263 (1987)

    Article  CAS  Google Scholar 

  54. B. Brocklehurst, K.A. McLauchlan, Int. J. Radiat. Biol. 69, 3 (1996)

    Article  CAS  Google Scholar 

  55. D.V. Stass, B.M. Tadjikov, Y.N. Molin, Chem. Phys. Letts. 235, 511 (1995)

    Article  CAS  Google Scholar 

  56. M. Sacher, G. Grampp, B. Bunsenges, Phys. Chem. 101, 971 (1997)

    CAS  Google Scholar 

  57. C. Timmel, U. Till, B. Brocklehurst, K.A. McLauchlan, P.J. Hore, Mol. Phys. 95, 71 (1998)

    Article  CAS  Google Scholar 

  58. M. Justinek, G. Grampp, S. Landgraf, P.J. Hore, N.N. Lukzen, J. Am. Chem. Soc. 126, 5635 (2004)

    Article  CAS  Google Scholar 

  59. B. Brocklehurst, J. Chem. Soc. Faraday Trans. 93, 1079 (1997)

    Article  CAS  Google Scholar 

  60. V.A. Bagryansky, O.M. Usov, V.I. Borokov, Chem. Phys. 255, 237 (2000)

    Article  CAS  Google Scholar 

  61. Y.N. Molin, Bull. Korean Chem. Soc. 20, 7 (1999)

    CAS  Google Scholar 

  62. K.A. McLauchlan, S.R. Nattrass, Mol. Phys. 65, 1483 (1988)

    Article  CAS  Google Scholar 

  63. K. Schulten, P.G. Wolynes, J. Chem. Phys. 68, 3292 (1978)

    Article  CAS  Google Scholar 

  64. E.W. Knapp, K. Schulten, J. Chem. Phys. 71, 1878 (1979)

    Article  CAS  Google Scholar 

  65. A. Weller, F. Nolting, H. Staerk, Chem. Phys. Lett. 96, 24 (1983)

    Article  CAS  Google Scholar 

  66. D.V. Stass, F.B. Sviridenko, Y.N. Molin, Radiat. Phys. Chem. 67, 207 (2003)

    Article  CAS  Google Scholar 

  67. O.A. Anisimov, V.M. Grigoryants, V.K. Molchanov, Y.N. Molin, Chem. Phys. Lett. 66, 265 (1979)

    Article  CAS  Google Scholar 

  68. O.A. Anisimov, V.M. Grigoryants, Y.N. Molin, J. Phys. Chem. 84, 1853 (1980)

    Article  Google Scholar 

  69. I.A. Shkrob, A.D. Trifunac, Radiat. Phys. Chem. 50, 227 (1997)

    Article  CAS  Google Scholar 

  70. S.N. Batchelor, K.A. McLauchlan, I.A. Shkrob, Z. Phys. Chem. 180, 9 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Agarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, A. (2014). Spin Dynamics. In: Simulation Studies of Recombination Kinetics and Spin Dynamics in Radiation Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06272-3_3

Download citation

Publish with us

Policies and ethics