Skip to main content

Harmonic Analysis and Stochastic Partial Differential Equations: The Stochastic Functional Calculus

  • Conference paper
  • First Online:
  • 635 Accesses

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 240))

Abstract

It has been recognised recently that there is a close connection between existence and regularity results for stochastic partial differential equations and functional calculus techniques in harmonic analysis. The connection is made more explicit in this paper with the notion of a stochastic functional calculus.

In the deterministic setting, suppose that A1,A2 are bounded linear operators acting on a Banach space E. A pair \((\mu_1,\mu_2)\) of continuous probability measures on [0, 1] determines a functional calculus \(f\;\mapsto\;f_{\mu_{1},\mu_{2}}(A_1,A_2)\) for analytic functions f by weighting all possible orderings of operator products of A1 and A2 via the probability measures µ1 and µ2. For example, \(f\;\mapsto\;f_{\mu,\mu}(A_1,A_2)\) is the Weyl functional calculus with equally weighted operator products.

Replacing μ1 by Lebesgue measure λ on [0, t] and μ2 by stochastic integration with respect to a Wiener process W, we show that there exists a functional calculus \(f\;\mapsto\;f_{\lambda,W;t}(A+B)\) for bounded holomorphic functions f if A is a densely defined Hilbert space operator with a bounded holomorphic functional calculus and B is small compared to A relative to a square function norm. By this means, the solution of the stochastic evolution equation \(dX_t\;=\;AX_{t}dt+BX_{t}dW_{t},\;X_0\;=\;x\), is represented as \(t\;\mapsto\;e_{\lambda,W;t}^{A+B}x,t\geq\;0.\). We show how to extend some of our results to \(L^{p}-\mathrm{spaces},\;2\leq p < \infty\) and apply them to the regularity of solutions of the Zakai equation.

Mathematics Subject Classification (2010). Primary 47A60; Secondary 47D06, 60H15.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Brzeźniak, Stochastic partial differential equations in M-type 2 Banach spaces,. Potential Anal. 4 (1995), 1–45.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z. Brzeźniak, J. van Neerven, M.C. Veraar and L. Weis, Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation. J. Differential Equations 245 (2008), 30–58

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H functional calculus. J. Austral. Math. Soc. Ser. A 60 (1996), 51–89.

    Google Scholar 

  4. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  5. J. Dettweiler, J. van Neerven and L. Weis, Space-time regularity of solutions of the parabolic stochastic Cauchy problem. Stoch. Anal. Appl. 24 (2006), 843–869.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Flandoli, On the semigroup approach to stochastic evolution equations. Stochastic Analysis and Appl. 10 (1992), 181–203.

    Article  MATH  MathSciNet  Google Scholar 

  7. D.J.H. Garling, Brownian motion and UMD-spaces, in: “Probability and Banach Spaces” (Zaragoza, 1985), 36–49, Lecture Notes in Math. 1221, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  8. H. Heinich, Esperance conditionelle pour les fonctions vectorielles. C.R. Acad. Sci. Paris Ser. A 276 (1973), 935–938.

    Google Scholar 

  9. B. Jefferies, Conditional expectation for operator-valued measures and functions. Bull. Austral. Math. Soc. 30 (1984), 421–429.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Jefferies, Feynman’s operational calculus and the stochastic functional calculus in Hilbert space, in “The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis”, Proc. Centre Math. Appl. Austral. Nat. Univ. 44, Austral. Nat. Univ., Canberra, 2010, 183–210.

    Google Scholar 

  11. B. Jefferies and G.W. Johnson, Feynman’s operational calculi for noncommuting operators: Definitions and elementary properties. Russ. J. Math. Phys. 8 (2001), 153–171.

    MATH  MathSciNet  Google Scholar 

  12. B. Jefferies, Feynman’s operational calculi for noncommuting systems of operators: tensors, ordered supports and disentangling an exponential factor. Math. Notes 70 (2001), 815–838.

    Google Scholar 

  13. N.J. Kalton, J.M.A.M. van Neerven, M.C. Veraar, and L.W.Weis, Embedding vectorvalued Besov spaces into spaces of γ-radonifying operators. Math. Nachr. 281 (2008), 238–252.

    Google Scholar 

  14. P. Kunstmann and L. Weis, L p -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus. Functional analytic methods for evolution equations, 65–311, Lecture Notes in Math. 1855, Springer, Berlin, 2004.

    Google Scholar 

  15. H.H. Kuo, Gaussian measures in Banach spaces. Lecture Notes in Math. 463, Springer, Berlin, 1975.

    Google Scholar 

  16. S. Kwapień, Decoupling inequalities for polynomial chaos. Ann. Probab. 15 (1987), 1062–1071.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Kwapień and W. Woyczyński, Random series and stochastic integrals: single and multiple. Birkhäuser Boston, Inc., Boston, MA, 1992.

    Google Scholar 

  18. J. Maas, Malliavin calculus and decoupling inequalities in Banach spaces. J. Math. Anal. Appl. 363 (2010), 383–398.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. McIntosh, Operators which have an H -functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations 1986, 212–222. Proc. Centre for Mathematical Analysis 14, ANU, Canberra, 1986.

    Google Scholar 

  20. J. van Neerven and L. Weis, Stochastic integration of functions with values in a Banach space. Studia Math. 166 (2005), 131–170.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. van Neerven, M.C. Veraar and L. Weis, Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255 (2008), 940–993.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. van Neerven, Stochastic maximal L p -regularity. Ann. Probab. 40 (2012), 788–812.

    Google Scholar 

  23. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Applied Mathematical Sciences, Vol. 44, New York/Berlin/Heidelberg/Tokyo, 1983.

    Google Scholar 

  24. G. Pisier, Probabilistic methods in the geometry of Banach spaces. Probability and analysis (Varenna, 1985), 167–241, Lecture Notes in Math. 1206, Springer, Berlin, 1986.

    Google Scholar 

  25. J. Rosiński and Z. Suchanecki, On the space of vector-valued functions integrable with respect to the white noise. Colloq. Math. 43 (1980), 183–201.

    MATH  MathSciNet  Google Scholar 

  26. G. Samorodnitsky and M. Taqqu, Multiple stable integrals of Banach-valued functions. J. Theoret. Probab. 3 (1990), 267–287

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Schaefer, Topological Vector Spaces, Springer-Verlag, Berlin/Heidelberg/New York, 1980.

    Google Scholar 

  28. L. Schwartz, Radon Measures in Arbitrary Topological Spaces and Cylindrical Measures, Tata Inst. of Fundamental Research, Oxford Univ. Press, Bombay, 1973.

    Google Scholar 

  29. A.V. Skorohod, Random Linear Operators, Riedel, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Jefferies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jefferies, B. (2014). Harmonic Analysis and Stochastic Partial Differential Equations: The Stochastic Functional Calculus. In: Ball, J., Dritschel, M., ter Elst, A., Portal, P., Potapov, D. (eds) Operator Theory in Harmonic and Non-commutative Analysis. Operator Theory: Advances and Applications, vol 240. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-06266-2_9

Download citation

Publish with us

Policies and ethics