Skip to main content

Some Remarks on the Spectral Problem Underlying the Camassa–Holm Hierarchy

  • Conference paper
  • First Online:
Operator Theory in Harmonic and Non-commutative Analysis

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 240))

Abstract

We study particular cases of left-definite eigenvalue problems \(A\psi\;=\;B\psi\), with \(A\;\geq\;\varepsilon\it{I}\)for some \(\varepsilon\;>\;0\;\mathrm{and}\;\it{B}\; \mathrm{self-adjoint}\), but B not necessarily positive or negative definite, applicable, in particular, to the eigenvalue problem underlying the Camassa–Holm hierarchy. In fact, we will treat a more general version where A represents a positive definite Schrödinger or Sturm–Liouville operator T in \(L^2(\mathbb{R};dx)\) associated with a differential expression of the form \(\tau\;=\;-(d/dx)p(x)(d/dx)+q(x),x\in\mathbb{R}\), and B represents an operator of multiplication by \(r(x)\;\mathrm{in}\;L^2(\mathbb{R};dx)\), which, in general, is not a weight, that is, it is not nonnegative (or nonpositive) a.e. on \(\mathbb{R}\). In fact, our methods naturally permit us to treat certain classes of distributions (resp., measures) for the coefficients q and r and hence considerably extend the scope of this (generalized) eigenvalue problem, without having to change the underlying Hilbert space \(L^2(\mathbb{R};dx)\). Our approach relies on rewriting the eigenvalue problem \(A\psi\;=\;B\psi\) in the form \(A^{-1/2}BA^{-1/2}\chi\;=\lambda^{-1}\chi,\; \chi\;=\;A^{1/2}\psi\), and a careful study of (appropriate realizations of) the operator \(A^{-1/2}BA^{-1/2}\;\mathrm{in}\;L^2(\mathbb{R};dx)\).

In the course of our treatment, we review and employ various necessary and sufficient conditions for q to be relatively bounded (resp., compact) and relatively form bounded (resp., form compact) with respect to \(T_{0}\;=\;-d^2/dx^{2}\; \mathrm{defined\; on}\;H^2(\mathbb{R})\). In addition, we employ a supersymmetric formalism which permits us to factor the second-order operator T into a product of two firstorder operators familiar from (and inspired by) Miura’s transformation linking the KdV and mKdV hierarchy of nonlinear evolution equations. We also treat the case of periodic coefficients q and r, where q may be a distribution and r generates a measure and hence no smoothness is assumed for q and r.

Mathematics Subject Classification (2010). Primary 34B24, 34C25, 34K13, 34L05, 34L40, 35Q58, 47A10, 47A75; Secondary 34B20, 34C10, 34L25, 37K10, 47A63, 47E05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, second edition, Academic Press, 2003.

    Google Scholar 

  2. S. Alama, M. Avellaneda, P.A. Deift, and R. Hempel, On the existence of eigenvalues of a divergence-form operator A + λB in a gap of σ(A), Asymptotic Anal. 8, 311–344 (1994).

    MATH  MathSciNet  Google Scholar 

  3. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, with an Appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005.

    Google Scholar 

  4. S. Albeverio, A. Kostenko, and M. Malamud, Spectral theory of semibounded Sturm– Liouville operators with local interactions on a discrete set, J. Math. Phys. 51, 102102 (2010), 24 pp.

    Google Scholar 

  5. T.G. Anderson and D.B. Hinton, Relative boundedness and compactness theory for second-order differential operators, J. Inequal. & Appl. 1, 375–400 (1997).

    MATH  MathSciNet  Google Scholar 

  6. F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm–Liouville problems, J. reine angew. Math. 375/376, 380–393 (1987).

    Google Scholar 

  7. J.-G. Bak and A.A. Shkalikov, Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials, Math. Notes 71, 587–594 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Beals, Indefinite Sturm–Liouville problems and half-range completeness, J. Diff. Eq. 56, 391–407 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Beals, D.H. Sattinger, and J. Szmigielski, Multipeakons and the classical moment problem, Adv. Math. 154, 229–257 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Beals, D.H. Sattinger, and J. Szmigielski, Periodic peakons and Calogero– Fran¸coise flows, J. Inst. Math. Jussieu 4, No. 1, 1–27 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Behrndt, On the spectral theory of singular indefinite Sturm–Liouville operators, J. Math. Anal. Appl. 334, 1439–1449 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Behrndt, Spectral theory of elliptic differential operators with indefinite weights, Proc. Roy. Soc. Edinburgh 143A, 21–38 (2013).

    Article  MathSciNet  Google Scholar 

  13. J. Behrndt, Q. Katatbeh, and C. Trunk, Non-real eigenvalues of singular indefinite Sturm–Liouville operators, Proc. Amer. Math. Soc. 137, 3797–3806 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Behrndt, R. Möws, and C. Trunk, Eigenvalue estimates for singular left-definite Sturm–Liouville operators, J. Spectral Th. 1, 327–347 (2011).

    Article  MATH  Google Scholar 

  15. J. Behrndt and F. Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights, J. Diff. Eq. 248, 2015–2037 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm–Liouville operators, J. Diff. Eq. 238, 491–519 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Bennewitz, On the spectral problem associated with the Camassa–Holm equation, J. Nonlinear Math. Phys. 11, 422–434 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Bennewitz, B. M. Brown, and R.Weikard, Inverse spectral and scattering theory for the half-line left-definite Sturm–Liouville problem, SIAM J. Math. Anal. 40, 2105–2131 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Bennewitz, B.M. Brown, and R. Weikard, A uniqueness result for onedimensional inverse scattering, Math. Nachr. 285, 941–948 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Bennewitz, B.M. Brown, and R. Weikard, Scattering and inverse scattering for a left-definite Sturm–Liouville problem, J. Diff. Eq. 253, 2380–2419 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Bennewitz and W.N. Everitt, On second-order left-definite boundary value problems, in Ordinary Differential Equations and Operators, (Proceedings, Dundee, 1982), W.N. Everitt and R.T. Lewis (eds.), Lecture Notes in Math., Vol. 1032, Springer, Berlin, 1983, pp. 31–67.

    Google Scholar 

  22. A.M. Berthier, Spectral Theory and Wave Operators for the Schrödinger Equation, Research Notes in Mathematics, Vol. 71, Pitman, Boston, 1982.

    Google Scholar 

  23. P. Binding and A. Fleige, Conditions for an indefinite Sturm–Liouville Riesz basis property, in Recent Advances in Operator Theory in Hilbert and Krein Spaces, J. Behrndt, K.-H. Förster, and C. Trunk (eds.), Operator Theory: Advances and Applications, Birkhäuser, Basel, Vol. 198, 2009, pp. 87–95.

    Google Scholar 

  24. D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, and B. Simon, Witten index, axial anomaly, and Krein’s spectral shift function in supersymmetric quantum mechanics, J. Math. Phys. 28, 1512–1525 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  25. B.M. Brown, M.S.P. Eastham, and K.M. Schmidt, Periodic Differential Operators, Birkhäuser, 2013.

    Google Scholar 

  26. R.C. Brown and D.B. Hinton, Relative form boundedness and compactness for a second-order differential operator, J. Comp. Appl. Math. 171, 123–140 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Carlone, M. Malamud, and A. Posilicano, On the spectral theory of Gesztesy– Šeba realizations of 1-D Dirac operators with point interactions on a discrete set, J. Diff. Eq. 254, 3835–3902 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Clark and F. Gesztesy, Weyl–Titchmarsh M-function asymptotics and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354, 3475–3534 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Clark and F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators, Proc. Roy. Soc. Edinburgh 133A, 747–758 (2003).

    Article  MathSciNet  Google Scholar 

  30. A. Constantin, A general-weighted Sturm–Liouville problem, Scuola Norm. Sup. 24, 767–782 (1997).

    MATH  MathSciNet  Google Scholar 

  31. A. Constantin, On the spectral problem for the periodic Camassa–Holm equation, J. Math. Anal. Appl. 210, 215–230 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Constantin, On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155, 352–363(1998).

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Constantin, On the scattering problem for the Camassa–Holm equation, Proc. Roy. Soc. London A 457, 953–970 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Constantin, V.S. Gerdjikov, and R.I. Rossen, Inverse scattering transform for the Camassa–Holm equation, Inverse Probl. 22, 2197–2207 (2006).

    Article  MATH  Google Scholar 

  35. A. Constantin and J. Lenells, On the inverse scattering approach to the Camassa– Holm equation, J. Nonlinear Math. Phys. 10, 252–255 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Constantin and H.P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math. 52, 949–982 (1999).

    Article  MathSciNet  Google Scholar 

  37. K. Daho and H. Langer, Sturm–Liouville operators with an indefinite weight function: The Periodic case, Radcvi Mat. 2, 165–188 (1986).

    MATH  MathSciNet  Google Scholar 

  38. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods, Springer, Berlin, 2000.

    MATH  Google Scholar 

  39. P.A. Deift, Applications of a commutation formula, Duke Math. J. 45, 267–310 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Djakov and B. Mityagin, Multiplicities of the eigenvalues of periodic Dirac operators, J. Diff. Eq. 210, 178–216 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Djakov and B. Mityagin, Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials, Integral Transforms Special Fcts. 20, nos. 3-4, 265–273 (2009).

    Google Scholar 

  42. P. Djakov and B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. PDE 6, no. 2, 95–165 (2009).

    Google Scholar 

  43. P. Djakov and B. Mityagin, Fourier method for one-dimensional Schrödinger operators with singular periodic potentials, in Topics in Operator Theory, Vol. 2: Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, Vol. 203, Birkhäuser, Basel, 2010, pp. 195–236.

    Google Scholar 

  44. P. Djakov and B. Mityagin, Criteria for existence of Riesz bases consisting of root functions of Hill and 1d Dirac operators, J. Funct. Anal. 263, 2300–2332 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  45. N. Dunford and J.T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience, New York, 1988.

    Google Scholar 

  46. M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh and London, 1973.

    Google Scholar 

  47. J. Eckhardt, Direct and inverse spectral theory of singular left-definite Sturm– Liouville operators, J. Diff. Eq. 253, 604–634 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Supersymmetry and Schrödinger- type operators with distributional matrix-valued potentials, arXiv:1206.4966, J. Spectral Theory, to appear.

    Google Scholar 

  49. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, Opuscula Math. 33, 467– 563 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  50. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Inverse spectral theory for Sturm–Liouville operators with distributional coefficients, J. London Math. Soc. (2) 88, 801–828 (2013).

    Google Scholar 

  51. J. Eckhardt and G. Teschl, On the isospectral problem of the dispersionless Camassa–Holm equation, Adv. Math. 235, 469–495 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Eckhardt and G. Teschl, Sturm–Liouville operators with measure-valued coefficients, J. Analyse Math. 120, 151–224 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  53. D.E. Edmunds andW.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.

    Google Scholar 

  54. W.G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics, Vol. 433, Springer, Berlin, 1975.

    Google Scholar 

  55. J. Fleckinger and M.L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295, 305–324 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  56. G. Freiling, V. Rykhlov, and V. Yurko, Spectral analysis for an indefinite singular Sturm–Liouville problem, Appl. Anal. 81, 1283–1305 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  57. F. Gesztesy, On the modified Korteweg-de Vries equation, in Differential Equations with Applications in Biology, Physics, and Engineering, J.A. Goldstein, F. Kappel, and W. Schappacher (eds.), Marcel Dekker, New York, 1991, pp. 139–183.

    Google Scholar 

  58. F. Gesztesy, Quasi-periodic, finite-gap solutions of the modified Korteweg-de Vries equation, in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, S. Albeverio, J.E. Fenstad, H. Holden, and T. Lindstrøm (eds.), Vol. 1, Cambridge Univ. Press, Cambridge, 1992, pp. 428–471.

    Google Scholar 

  59. F. Gesztesy, A complete spectral characterizaton of the double commutation method, J. Funct. Anal. 117, 401–446 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  60. F. Gesztesy and H. Holden, Algebro-geometric solutions of the Camassa–Holm hierarchy, Rev. Mat. Iberoamericana 19, 73–142 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  61. F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions. Vol. I: (1 + 1)-Dimensional Continuous Models, Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge Univ. Press, 2003.

    Google Scholar 

  62. F. Gesztesy and H. Holden, Real-valued algebro-geometric solutions of the Camassa– Holm hierarchy, Phil. Trans. Roy. Soc. A 366, 1025–1054 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  63. F. Gesztesy, M. Malamud, M. Mitrea, and S. Naboko, Generalized polar decompositions for closed operators in Hilbert spaces and some applications, Integral Eq. Operator Th. 64, 83–113 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  64. F. Gesztesy, M. Mitrea. Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Diff. Eq. 247, 2871–2896 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  65. F. Gesztesy and R. Nichols, Weak convergence of spectral shift functions for onedimensional Schrödinger operators, Math. Nachr. 285, 1799–1838 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  66. F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV -equation, Trans. Amer. Math. Soc. 324, 465–525 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  67. F. Gesztesy and R. Svirsky, (m)KdV -Solitons on the background of quasi-periodic finite-gap solutions, Memoirs Amer. Math. Soc. 118 (563), 1–88 (1995).

    Google Scholar 

  68. I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965.

    Google Scholar 

  69. T. Godoy, J.-P. Gossez, S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Ann. Mat. Pura Appl. 189, 497–521 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  70. G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.

    Google Scholar 

  71. V. Hardt, A. Konstantinov, and R. Mennicken, On the spectrum of the product of closed operators, Math. Nachr. 215, 91–102 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  72. P. Hartman Differential equations with non-oscillatory eigenfunctions, Duke Math. J. 15, 697–709 (1948).

    Google Scholar 

  73. R. Hempel, A left-definite generalized eigenvalue problem for Schrödinger operators, Habilitation, Dept. of Mathematics, University of Munich, Germany, 1987.

    Google Scholar 

  74. P. Hess, On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions, Math. Ann. 270, 467–475 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  75. P. Hess, On the asymptotic distribution of eigenvalues of some nonselfadjoint problems, Bull. London Math. Soc. 18, 181–184 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  76. P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Commun. Partial Diff. Eq. 5, 999–1030 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  77. D. B. Hinton and S.C. Melescue, Relative boundedness-compactness inequalities for a second order differential operator, Math. Ineq. & Appls. 4, 35–52 (2001).

    MATH  MathSciNet  Google Scholar 

  78. R.O. Hryniv and Ya.V. Mykytyuk, 1D Schrödinger operators with periodic singular potentials, Methods Funct. Anal. Topology 7, no. 4, 31–42 (2001).

    Google Scholar 

  79. R.O. Hryniv and Ya.V. Mykytyuk, 1D Schrödinger operators with singular Gordon potentials, Methods Funct. Anal. Topology 8, no. 1, 36–48 (2002).

    Google Scholar 

  80. R.O. Hryniv and Ya.V. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials, Meth. Funct. Anal. Topology 18, 152–159 (2012).

    Google Scholar 

  81. B.J. Jaye, V.G. Maz’ya, and I.E. Verbitsky, Existence and regularity of positive solutions of elliptic equations of Schrödinger type, J. Analyse Math. 118, 577–621 (2012).

    Google Scholar 

  82. T. Kappeler and C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal. 186, 62–91 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  83. T. Kappeler, P. Perry, M. Shubin, and P. Topalov, The Miura map on the line, Int. Math. Res. Notices, 2005, No. 50.

    Google Scholar 

  84. T. Kappeler and P. Topalov, Global fold structure of the Miura map on L 2(\( \mathbb{T} \)), Int. Math. Res. Notices 2004, No. 39, 2039–2068.

    Google Scholar 

  85. I.M. Karabash, A functional model, eigenvalues, and finite singular critical points for indefinite Sturm–Liouville operators, in Topics in Operator Theory. Volume 2. Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, Vol. 203, Birkhäuser, Basel, 2010, pp. 247–287.

    Google Scholar 

  86. I.M. Karabash and M.M. Malamud, Indefinite _ Sturm–Liouville operators (sgn x) \( \left( { - \frac{{{d^2}}}{{d{x^2}}}\, + \,q(x)} \right) \) with finite-zone potentials, Operators and Matrices 1, 301–368 (2007).

    Google Scholar 

  87. I.M. Karabash, A.S. Kostenko, and M.M. Malamud, The similarity problem for J-nonnegative Sturm–Liouville operators, J. Diff. Eq. 246, 964–997 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  88. I. Karabash and C. Trunk, Spectral properties of singular Sturm–Liouville operators with indefinite weight sgn x, Proc. Roy. Soc. Edinburgh 139A, 483–503 (2009).

    Article  MathSciNet  Google Scholar 

  89. M. Kato, Estimates for the eigenvalues of Hill’s operator with distributional coefficients, Tokyo J. Math. 33, 361–364 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  90. T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.

    Google Scholar 

  91. Q. Kong, H. Wu, and A. Zettl, Left-definite Sturm–Liouville problems, J. Diff. Eq. 177, 1–26 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  92. Q. Kong, H. Wu, and A. Zettl, Singular left-definite Sturm–Liouville problems, J. Diff. Eq. 206, 1–29 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  93. Q. Kong, H. Wu, A. Zettl, and M. Möller, Indefinite Sturm–Liouville problems, Proc. Roy. Soc. Edinburgh 133A, 639–652 (2003).

    Article  Google Scholar 

  94. E. Korotyaev, Inverse problem for periodic “weighted” operators, J. Funct. Anal. 170, 188–218 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  95. E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Notices 2003, No. 37, 2019–2031.

    Google Scholar 

  96. E. Korotyaev, Inverse spectral problem for the periodic Camassa–Holm equation, J. Nonlinear Math. Phys. 11, 499–507 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  97. E. Korotyaev, Sharp asymptotics of the quasimomentum, Asymptot. Anal. 80, 269–287 (2012).

    MATH  MathSciNet  Google Scholar 

  98. A. Kostenko, The similarity problem for indefinite Sturm–Liouville operators with periodic coefficients, Operators and Matrices 5, 707–722 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  99. J.L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14, 233–241 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  100. B.V. Loginov and O.V. Makeeva, The pseudoperturbation method in generalized eigenvalue problems, Dokl. Math. 77, 194–197 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  101. M. Marletta and A. Zettl, Counting and computing eigenvalues of left-definite Sturm–Liouville problems, J. Comp. Appl. Math. 148, 65–75 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  102. M. Marletta and A. Zettl, Floquet theory for left-definite Sturm–Liouville problems, J. Math. Anal. Appl. 305, 477–482 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  103. V.G. Maz’ya and T.O. Shaposhnikova, Theory of Sobolev Multipliers, Springer, Berlin, 2009.

    Google Scholar 

  104. V.G. Maz’ya and I.E. Verbitsky, Boundedness and compactness criteria for the onedimensional Schrödinger operator, in Function Spaces, Interpolation Theory and Related Topics, M. Cwikel, M. Engliš, A. Kufner, L.-E. Persson, G. Sparr (eds.), de Gruyter, Berlin, 2002, pp. 369–382.

    Google Scholar 

  105. V.G. Maz’ya and I.E. Verbitsky, The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188, 263–302 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  106. V.G. Maz’ya and I.E. Verbitsky, Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162, 81–136 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  107. V.G. Maz’ya and I.E. Verbitsky, Form boundedness of the general second-order differential operator, Commun. Pure Appl. Math. 59, 1286–1329 (2006).

    Article  MathSciNet  Google Scholar 

  108. H.P. McKean, Addition for the acoustic equation, Commun. Pure Appl. Math. 54, 1271–1288 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  109. H.P. McKean, Fredholm determinants and the Camassa–Holm hierarchy, Commun. Pure Appl. Math. 56, 638–680 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  110. H.P. McKean, The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies, Commun. Pure Appl. Math. 56, 998–1015 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  111. H. P. McKean, Breakdown of the Camassa–Holm equation, Commun. Pure Appl. Math. 57, 416–418 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  112. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  113. V.A. Mikhailets and V.M. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 14, no. 2, 184–200 (2008).

    Google Scholar 

  114. V.A. Mikhailets and V.M. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 15, no. 1, 31–40 (2009).

    Google Scholar 

  115. E. M¨uller-Pfeifer, Spectral Theory of Ordinary Differential Operators, Ellis Horwood, Chichester, 1981.

    Google Scholar 

  116. M.A. Naimark, Linear Differential Operators, Part II, Ungar, New York, 1968.

    Google Scholar 

  117. M.I. Neiman-zade and A.A. Shkalikov, Strongly elliptic operators with singular coefficients, Russ. J. Math. Phys. 13, 70–78 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  118. W.V. Petryshyn, On the eigenvalue problem Tu − λSu = 0 with unbounded and nonsymmetric operators T and S, Phil. Trans. Roy. Soc. London A 262, 413–458 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  119. F. Philipp, Indefinite Sturm–Liouville operators with periodic coefficients, Operators and Matrices 7, 777–811 (2013).

    MATH  MathSciNet  Google Scholar 

  120. M. Reed and B. Simon, Methods of Modern Mathematical Physics. III: Scattering Theory, Academic Press, New York, 1979.

    Google Scholar 

  121. M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York, 1978.

    Google Scholar 

  122. F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122, 343–368 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  123. A.M Savchuk and A.A. Shkalikov, Sturm–Liouville operators with singular potentials, Math. Notes 66, 741–753 (1999).

    Google Scholar 

  124. A.M. Savchuk and A.A. Shkalikov, Sturm–Liouville operators with distribution potentials, Trans. Moscow Math. Soc. 2003, 143–192.

    Google Scholar 

  125. M. Schechter, Operator Methods in Quantum Mechanics, North–Holland, New York, 1981.

    Google Scholar 

  126. M. Schechter, Principles of Functional Analysis, 2nd ed., Graduate Studies in Mathematics, Vol. 36, Amer. Math. Soc., Providence, RI, 2002.

    Google Scholar 

  127. B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, NJ, 1971.

    Google Scholar 

  128. B. Simon, Trace Ideals and Their Applications, 2nd ed., Mathematical Surveys and Monographs, Vol. 120, Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  129. G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Graduate Studies in Mathematics, Amer. Math. Soc., Vol. 99, RI, 2009.

    Google Scholar 

  130. G. Teschl, private communication.

    Google Scholar 

  131. B. Thaller, Normal forms of an abstract Dirac operator and applications to scattering theory, J. Math. Phys. 29, 249–257 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  132. B. Thaller, The Dirac Equation, Springer, Berlin, 1992.

    Google Scholar 

  133. C. Tretter, Linear operator pencils A − λB with discrete spectrum, Integral Eq. Operator Th. 37, 357–373 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  134. H. Volkmer, Sturm–Liouville problems with indefinite weights and Everitt’s inequality, Proc. Roy. Soc. Edinburgh 126A, 1097–1112 (1996).

    Article  MathSciNet  Google Scholar 

  135. J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, Vol. 68, Springer, New York, 1980.

    Google Scholar 

  136. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., Vol. 1258, Springer, Berlin, 1987.

    Google Scholar 

  137. A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, Vol. 121, Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  138. D.R. Yafaev, On the spectrum of the perturbed polyharmonic operator, in Topics in Mathematical Physics, Vol. 5. Spectral Theory, M.Sh. Birman (ed.), Consultants Bureau, New York, 1972, pp. 107–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gesztesy, F., Weikard, R. (2014). Some Remarks on the Spectral Problem Underlying the Camassa–Holm Hierarchy. In: Ball, J., Dritschel, M., ter Elst, A., Portal, P., Potapov, D. (eds) Operator Theory in Harmonic and Non-commutative Analysis. Operator Theory: Advances and Applications, vol 240. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-06266-2_7

Download citation

Publish with us

Policies and ethics