Some Remarks on the Spectral Problem Underlying the Camassa–Holm Hierarchy
- 4 Citations
- 460 Downloads
Abstract
We study particular cases of left-definite eigenvalue problems \(A\psi\;=\;B\psi\), with \(A\;\geq\;\varepsilon\it{I}\)for some \(\varepsilon\;>\;0\;\mathrm{and}\;\it{B}\; \mathrm{self-adjoint}\), but B not necessarily positive or negative definite, applicable, in particular, to the eigenvalue problem underlying the Camassa–Holm hierarchy. In fact, we will treat a more general version where A represents a positive definite Schrödinger or Sturm–Liouville operator T in \(L^2(\mathbb{R};dx)\) associated with a differential expression of the form \(\tau\;=\;-(d/dx)p(x)(d/dx)+q(x),x\in\mathbb{R}\), and B represents an operator of multiplication by \(r(x)\;\mathrm{in}\;L^2(\mathbb{R};dx)\), which, in general, is not a weight, that is, it is not nonnegative (or nonpositive) a.e. on \(\mathbb{R}\). In fact, our methods naturally permit us to treat certain classes of distributions (resp., measures) for the coefficients q and r and hence considerably extend the scope of this (generalized) eigenvalue problem, without having to change the underlying Hilbert space \(L^2(\mathbb{R};dx)\). Our approach relies on rewriting the eigenvalue problem \(A\psi\;=\;B\psi\) in the form \(A^{-1/2}BA^{-1/2}\chi\;=\lambda^{-1}\chi,\; \chi\;=\;A^{1/2}\psi\), and a careful study of (appropriate realizations of) the operator \(A^{-1/2}BA^{-1/2}\;\mathrm{in}\;L^2(\mathbb{R};dx)\).
In the course of our treatment, we review and employ various necessary and sufficient conditions for q to be relatively bounded (resp., compact) and relatively form bounded (resp., form compact) with respect to \(T_{0}\;=\;-d^2/dx^{2}\; \mathrm{defined\; on}\;H^2(\mathbb{R})\). In addition, we employ a supersymmetric formalism which permits us to factor the second-order operator T into a product of two firstorder operators familiar from (and inspired by) Miura’s transformation linking the KdV and mKdV hierarchy of nonlinear evolution equations. We also treat the case of periodic coefficients q and r, where q may be a distribution and r generates a measure and hence no smoothness is assumed for q and r.
Keywords
Camassa–Holm hierarchy left-definite spectral problems distributional coefficients Floquet theory supersymmetric formalismPreview
Unable to display preview. Download preview PDF.
References
- [1]R.A. Adams and J.J.F. Fournier, Sobolev Spaces, second edition, Academic Press, 2003.Google Scholar
- [2]S. Alama, M. Avellaneda, P.A. Deift, and R. Hempel, On the existence of eigenvalues of a divergence-form operator A + λB in a gap of σ(A), Asymptotic Anal. 8, 311–344 (1994).zbMATHMathSciNetGoogle Scholar
- [3]S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, with an Appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005.Google Scholar
- [4]S. Albeverio, A. Kostenko, and M. Malamud, Spectral theory of semibounded Sturm– Liouville operators with local interactions on a discrete set, J. Math. Phys. 51, 102102 (2010), 24 pp.Google Scholar
- [5]T.G. Anderson and D.B. Hinton, Relative boundedness and compactness theory for second-order differential operators, J. Inequal. & Appl. 1, 375–400 (1997).zbMATHMathSciNetGoogle Scholar
- [6]F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm–Liouville problems, J. reine angew. Math. 375/376, 380–393 (1987).Google Scholar
- [7]J.-G. Bak and A.A. Shkalikov, Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials, Math. Notes 71, 587–594 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
- [8]R. Beals, Indefinite Sturm–Liouville problems and half-range completeness, J. Diff. Eq. 56, 391–407 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
- [9]R. Beals, D.H. Sattinger, and J. Szmigielski, Multipeakons and the classical moment problem, Adv. Math. 154, 229–257 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
- [10]R. Beals, D.H. Sattinger, and J. Szmigielski, Periodic peakons and Calogero– Fran¸coise flows, J. Inst. Math. Jussieu 4, No. 1, 1–27 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
- [11]J. Behrndt, On the spectral theory of singular indefinite Sturm–Liouville operators, J. Math. Anal. Appl. 334, 1439–1449 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
- [12]J. Behrndt, Spectral theory of elliptic differential operators with indefinite weights, Proc. Roy. Soc. Edinburgh 143A, 21–38 (2013).CrossRefMathSciNetGoogle Scholar
- [13]J. Behrndt, Q. Katatbeh, and C. Trunk, Non-real eigenvalues of singular indefinite Sturm–Liouville operators, Proc. Amer. Math. Soc. 137, 3797–3806 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
- [14]J. Behrndt, R. Möws, and C. Trunk, Eigenvalue estimates for singular left-definite Sturm–Liouville operators, J. Spectral Th. 1, 327–347 (2011).CrossRefzbMATHGoogle Scholar
- [15]J. Behrndt and F. Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights, J. Diff. Eq. 248, 2015–2037 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
- [16]J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm–Liouville operators, J. Diff. Eq. 238, 491–519 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
- [17]C. Bennewitz, On the spectral problem associated with the Camassa–Holm equation, J. Nonlinear Math. Phys. 11, 422–434 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
- [18]C. Bennewitz, B. M. Brown, and R.Weikard, Inverse spectral and scattering theory for the half-line left-definite Sturm–Liouville problem, SIAM J. Math. Anal. 40, 2105–2131 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
- [19]C. Bennewitz, B.M. Brown, and R. Weikard, A uniqueness result for onedimensional inverse scattering, Math. Nachr. 285, 941–948 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
- [20]C. Bennewitz, B.M. Brown, and R. Weikard, Scattering and inverse scattering for a left-definite Sturm–Liouville problem, J. Diff. Eq. 253, 2380–2419 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
- [21]C. Bennewitz and W.N. Everitt, On second-order left-definite boundary value problems, in Ordinary Differential Equations and Operators, (Proceedings, Dundee, 1982), W.N. Everitt and R.T. Lewis (eds.), Lecture Notes in Math., Vol. 1032, Springer, Berlin, 1983, pp. 31–67.Google Scholar
- [22]A.M. Berthier, Spectral Theory and Wave Operators for the Schrödinger Equation, Research Notes in Mathematics, Vol. 71, Pitman, Boston, 1982.Google Scholar
- [23]P. Binding and A. Fleige, Conditions for an indefinite Sturm–Liouville Riesz basis property, in Recent Advances in Operator Theory in Hilbert and Krein Spaces, J. Behrndt, K.-H. Förster, and C. Trunk (eds.), Operator Theory: Advances and Applications, Birkhäuser, Basel, Vol. 198, 2009, pp. 87–95.Google Scholar
- [24]D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, and B. Simon, Witten index, axial anomaly, and Krein’s spectral shift function in supersymmetric quantum mechanics, J. Math. Phys. 28, 1512–1525 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
- [25]B.M. Brown, M.S.P. Eastham, and K.M. Schmidt, Periodic Differential Operators, Birkhäuser, 2013.Google Scholar
- [26]R.C. Brown and D.B. Hinton, Relative form boundedness and compactness for a second-order differential operator, J. Comp. Appl. Math. 171, 123–140 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
- [27]R. Carlone, M. Malamud, and A. Posilicano, On the spectral theory of Gesztesy– Šeba realizations of 1-D Dirac operators with point interactions on a discrete set, J. Diff. Eq. 254, 3835–3902 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
- [28]S. Clark and F. Gesztesy, Weyl–Titchmarsh M-function asymptotics and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354, 3475–3534 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
- [29]S. Clark and F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators, Proc. Roy. Soc. Edinburgh 133A, 747–758 (2003).CrossRefMathSciNetGoogle Scholar
- [30]A. Constantin, A general-weighted Sturm–Liouville problem, Scuola Norm. Sup. 24, 767–782 (1997).zbMATHMathSciNetGoogle Scholar
- [31]A. Constantin, On the spectral problem for the periodic Camassa–Holm equation, J. Math. Anal. Appl. 210, 215–230 (1997).CrossRefzbMATHMathSciNetGoogle Scholar
- [32]A. Constantin, On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155, 352–363(1998).CrossRefzbMATHMathSciNetGoogle Scholar
- [33]A. Constantin, On the scattering problem for the Camassa–Holm equation, Proc. Roy. Soc. London A 457, 953–970 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
- [34]A. Constantin, V.S. Gerdjikov, and R.I. Rossen, Inverse scattering transform for the Camassa–Holm equation, Inverse Probl. 22, 2197–2207 (2006).CrossRefzbMATHGoogle Scholar
- [35]A. Constantin and J. Lenells, On the inverse scattering approach to the Camassa– Holm equation, J. Nonlinear Math. Phys. 10, 252–255 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
- [36]A. Constantin and H.P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math. 52, 949–982 (1999).CrossRefMathSciNetGoogle Scholar
- [37]K. Daho and H. Langer, Sturm–Liouville operators with an indefinite weight function: The Periodic case, Radcvi Mat. 2, 165–188 (1986).zbMATHMathSciNetGoogle Scholar
- [38]R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods, Springer, Berlin, 2000.zbMATHGoogle Scholar
- [39]P.A. Deift, Applications of a commutation formula, Duke Math. J. 45, 267–310 (1978).CrossRefzbMATHMathSciNetGoogle Scholar
- [40]P. Djakov and B. Mityagin, Multiplicities of the eigenvalues of periodic Dirac operators, J. Diff. Eq. 210, 178–216 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
- [41]P. Djakov and B. Mityagin, Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials, Integral Transforms Special Fcts. 20, nos. 3-4, 265–273 (2009).Google Scholar
- [42]P. Djakov and B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. PDE 6, no. 2, 95–165 (2009).Google Scholar
- [43]P. Djakov and B. Mityagin, Fourier method for one-dimensional Schrödinger operators with singular periodic potentials, in Topics in Operator Theory, Vol. 2: Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, Vol. 203, Birkhäuser, Basel, 2010, pp. 195–236.Google Scholar
- [44]P. Djakov and B. Mityagin, Criteria for existence of Riesz bases consisting of root functions of Hill and 1d Dirac operators, J. Funct. Anal. 263, 2300–2332 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
- [45]N. Dunford and J.T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience, New York, 1988.Google Scholar
- [46]M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh and London, 1973.Google Scholar
- [47]J. Eckhardt, Direct and inverse spectral theory of singular left-definite Sturm– Liouville operators, J. Diff. Eq. 253, 604–634 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
- [48]J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Supersymmetry and Schrödinger- type operators with distributional matrix-valued potentials, arXiv:1206.4966, J. Spectral Theory, to appear.Google Scholar
- [49]J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, Opuscula Math. 33, 467– 563 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
- [50]J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Inverse spectral theory for Sturm–Liouville operators with distributional coefficients, J. London Math. Soc. (2) 88, 801–828 (2013).Google Scholar
- [51]J. Eckhardt and G. Teschl, On the isospectral problem of the dispersionless Camassa–Holm equation, Adv. Math. 235, 469–495 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
- [52]J. Eckhardt and G. Teschl, Sturm–Liouville operators with measure-valued coefficients, J. Analyse Math. 120, 151–224 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
- [53]D.E. Edmunds andW.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.Google Scholar
- [54]W.G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics, Vol. 433, Springer, Berlin, 1975.Google Scholar
- [55]J. Fleckinger and M.L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295, 305–324 (1986).CrossRefzbMATHMathSciNetGoogle Scholar
- [56]G. Freiling, V. Rykhlov, and V. Yurko, Spectral analysis for an indefinite singular Sturm–Liouville problem, Appl. Anal. 81, 1283–1305 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
- [57]F. Gesztesy, On the modified Korteweg-de Vries equation, in Differential Equations with Applications in Biology, Physics, and Engineering, J.A. Goldstein, F. Kappel, and W. Schappacher (eds.), Marcel Dekker, New York, 1991, pp. 139–183.Google Scholar
- [58]F. Gesztesy, Quasi-periodic, finite-gap solutions of the modified Korteweg-de Vries equation, in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, S. Albeverio, J.E. Fenstad, H. Holden, and T. Lindstrøm (eds.), Vol. 1, Cambridge Univ. Press, Cambridge, 1992, pp. 428–471.Google Scholar
- [59]F. Gesztesy, A complete spectral characterizaton of the double commutation method, J. Funct. Anal. 117, 401–446 (1993).CrossRefzbMATHMathSciNetGoogle Scholar
- [60]F. Gesztesy and H. Holden, Algebro-geometric solutions of the Camassa–Holm hierarchy, Rev. Mat. Iberoamericana 19, 73–142 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
- [61]F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions. Vol. I: (1 + 1)-Dimensional Continuous Models, Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge Univ. Press, 2003.Google Scholar
- [62]F. Gesztesy and H. Holden, Real-valued algebro-geometric solutions of the Camassa– Holm hierarchy, Phil. Trans. Roy. Soc. A 366, 1025–1054 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
- [63]F. Gesztesy, M. Malamud, M. Mitrea, and S. Naboko, Generalized polar decompositions for closed operators in Hilbert spaces and some applications, Integral Eq. Operator Th. 64, 83–113 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
- [64]F. Gesztesy, M. Mitrea. Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Diff. Eq. 247, 2871–2896 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
- [65]F. Gesztesy and R. Nichols, Weak convergence of spectral shift functions for onedimensional Schrödinger operators, Math. Nachr. 285, 1799–1838 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
- [66]F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV -equation, Trans. Amer. Math. Soc. 324, 465–525 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
- [67]F. Gesztesy and R. Svirsky, (m)KdV -Solitons on the background of quasi-periodic finite-gap solutions, Memoirs Amer. Math. Soc. 118 (563), 1–88 (1995).Google Scholar
- [68]I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965.Google Scholar
- [69]T. Godoy, J.-P. Gossez, S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Ann. Mat. Pura Appl. 189, 497–521 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
- [70]G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.Google Scholar
- [71]V. Hardt, A. Konstantinov, and R. Mennicken, On the spectrum of the product of closed operators, Math. Nachr. 215, 91–102 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
- [72]P. Hartman Differential equations with non-oscillatory eigenfunctions, Duke Math. J. 15, 697–709 (1948).Google Scholar
- [73]R. Hempel, A left-definite generalized eigenvalue problem for Schrödinger operators, Habilitation, Dept. of Mathematics, University of Munich, Germany, 1987.Google Scholar
- [74]P. Hess, On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions, Math. Ann. 270, 467–475 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
- [75]P. Hess, On the asymptotic distribution of eigenvalues of some nonselfadjoint problems, Bull. London Math. Soc. 18, 181–184 (1986).CrossRefzbMATHMathSciNetGoogle Scholar
- [76]P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Commun. Partial Diff. Eq. 5, 999–1030 (1980).CrossRefzbMATHMathSciNetGoogle Scholar
- [77]D. B. Hinton and S.C. Melescue, Relative boundedness-compactness inequalities for a second order differential operator, Math. Ineq. & Appls. 4, 35–52 (2001).zbMATHMathSciNetGoogle Scholar
- [78]R.O. Hryniv and Ya.V. Mykytyuk, 1D Schrödinger operators with periodic singular potentials, Methods Funct. Anal. Topology 7, no. 4, 31–42 (2001).Google Scholar
- [79]R.O. Hryniv and Ya.V. Mykytyuk, 1D Schrödinger operators with singular Gordon potentials, Methods Funct. Anal. Topology 8, no. 1, 36–48 (2002).Google Scholar
- [80]R.O. Hryniv and Ya.V. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials, Meth. Funct. Anal. Topology 18, 152–159 (2012).Google Scholar
- [81]B.J. Jaye, V.G. Maz’ya, and I.E. Verbitsky, Existence and regularity of positive solutions of elliptic equations of Schrödinger type, J. Analyse Math. 118, 577–621 (2012).Google Scholar
- [82]T. Kappeler and C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal. 186, 62–91 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
- [83]T. Kappeler, P. Perry, M. Shubin, and P. Topalov, The Miura map on the line, Int. Math. Res. Notices, 2005, No. 50.Google Scholar
- [84]T. Kappeler and P. Topalov, Global fold structure of the Miura map on L 2(\( \mathbb{T} \)), Int. Math. Res. Notices 2004, No. 39, 2039–2068.Google Scholar
- [85]I.M. Karabash, A functional model, eigenvalues, and finite singular critical points for indefinite Sturm–Liouville operators, in Topics in Operator Theory. Volume 2. Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, Vol. 203, Birkhäuser, Basel, 2010, pp. 247–287.Google Scholar
- [86]I.M. Karabash and M.M. Malamud, Indefinite _ Sturm–Liouville operators (sgn x) \( \left( { - \frac{{{d^2}}}{{d{x^2}}}\, + \,q(x)} \right) \) with finite-zone potentials, Operators and Matrices 1, 301–368 (2007).Google Scholar
- [87]I.M. Karabash, A.S. Kostenko, and M.M. Malamud, The similarity problem for J-nonnegative Sturm–Liouville operators, J. Diff. Eq. 246, 964–997 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
- [88]I. Karabash and C. Trunk, Spectral properties of singular Sturm–Liouville operators with indefinite weight sgn x, Proc. Roy. Soc. Edinburgh 139A, 483–503 (2009).CrossRefMathSciNetGoogle Scholar
- [89]M. Kato, Estimates for the eigenvalues of Hill’s operator with distributional coefficients, Tokyo J. Math. 33, 361–364 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
- [90]T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.Google Scholar
- [91]Q. Kong, H. Wu, and A. Zettl, Left-definite Sturm–Liouville problems, J. Diff. Eq. 177, 1–26 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
- [92]Q. Kong, H. Wu, and A. Zettl, Singular left-definite Sturm–Liouville problems, J. Diff. Eq. 206, 1–29 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
- [93]Q. Kong, H. Wu, A. Zettl, and M. Möller, Indefinite Sturm–Liouville problems, Proc. Roy. Soc. Edinburgh 133A, 639–652 (2003).CrossRefGoogle Scholar
- [94]E. Korotyaev, Inverse problem for periodic “weighted” operators, J. Funct. Anal. 170, 188–218 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
- [95]E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Notices 2003, No. 37, 2019–2031.Google Scholar
- [96]E. Korotyaev, Inverse spectral problem for the periodic Camassa–Holm equation, J. Nonlinear Math. Phys. 11, 499–507 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
- [97]E. Korotyaev, Sharp asymptotics of the quasimomentum, Asymptot. Anal. 80, 269–287 (2012).zbMATHMathSciNetGoogle Scholar
- [98]A. Kostenko, The similarity problem for indefinite Sturm–Liouville operators with periodic coefficients, Operators and Matrices 5, 707–722 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
- [99]J.L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14, 233–241 (1962).CrossRefzbMATHMathSciNetGoogle Scholar
- [100]B.V. Loginov and O.V. Makeeva, The pseudoperturbation method in generalized eigenvalue problems, Dokl. Math. 77, 194–197 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
- [101]M. Marletta and A. Zettl, Counting and computing eigenvalues of left-definite Sturm–Liouville problems, J. Comp. Appl. Math. 148, 65–75 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
- [102]M. Marletta and A. Zettl, Floquet theory for left-definite Sturm–Liouville problems, J. Math. Anal. Appl. 305, 477–482 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
- [103]V.G. Maz’ya and T.O. Shaposhnikova, Theory of Sobolev Multipliers, Springer, Berlin, 2009.Google Scholar
- [104]V.G. Maz’ya and I.E. Verbitsky, Boundedness and compactness criteria for the onedimensional Schrödinger operator, in Function Spaces, Interpolation Theory and Related Topics, M. Cwikel, M. Engliš, A. Kufner, L.-E. Persson, G. Sparr (eds.), de Gruyter, Berlin, 2002, pp. 369–382.Google Scholar
- [105]V.G. Maz’ya and I.E. Verbitsky, The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188, 263–302 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
- [106]V.G. Maz’ya and I.E. Verbitsky, Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162, 81–136 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
- [107]V.G. Maz’ya and I.E. Verbitsky, Form boundedness of the general second-order differential operator, Commun. Pure Appl. Math. 59, 1286–1329 (2006).CrossRefMathSciNetGoogle Scholar
- [108]H.P. McKean, Addition for the acoustic equation, Commun. Pure Appl. Math. 54, 1271–1288 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
- [109]H.P. McKean, Fredholm determinants and the Camassa–Holm hierarchy, Commun. Pure Appl. Math. 56, 638–680 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
- [110]H.P. McKean, The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies, Commun. Pure Appl. Math. 56, 998–1015 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
- [111]H. P. McKean, Breakdown of the Camassa–Holm equation, Commun. Pure Appl. Math. 57, 416–418 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
- [112]W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.Google Scholar
- [113]V.A. Mikhailets and V.M. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 14, no. 2, 184–200 (2008).Google Scholar
- [114]V.A. Mikhailets and V.M. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 15, no. 1, 31–40 (2009).Google Scholar
- [115]E. M¨uller-Pfeifer, Spectral Theory of Ordinary Differential Operators, Ellis Horwood, Chichester, 1981.Google Scholar
- [116]M.A. Naimark, Linear Differential Operators, Part II, Ungar, New York, 1968.Google Scholar
- [117]M.I. Neiman-zade and A.A. Shkalikov, Strongly elliptic operators with singular coefficients, Russ. J. Math. Phys. 13, 70–78 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
- [118]W.V. Petryshyn, On the eigenvalue problem Tu − λSu = 0 with unbounded and nonsymmetric operators T and S, Phil. Trans. Roy. Soc. London A 262, 413–458 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
- [119]F. Philipp, Indefinite Sturm–Liouville operators with periodic coefficients, Operators and Matrices 7, 777–811 (2013).zbMATHMathSciNetGoogle Scholar
- [120]M. Reed and B. Simon, Methods of Modern Mathematical Physics. III: Scattering Theory, Academic Press, New York, 1979.Google Scholar
- [121]M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York, 1978.Google Scholar
- [122]F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122, 343–368 (1951).CrossRefzbMATHMathSciNetGoogle Scholar
- [123]A.M Savchuk and A.A. Shkalikov, Sturm–Liouville operators with singular potentials, Math. Notes 66, 741–753 (1999).Google Scholar
- [124]A.M. Savchuk and A.A. Shkalikov, Sturm–Liouville operators with distribution potentials, Trans. Moscow Math. Soc. 2003, 143–192.Google Scholar
- [125]M. Schechter, Operator Methods in Quantum Mechanics, North–Holland, New York, 1981.Google Scholar
- [126]M. Schechter, Principles of Functional Analysis, 2nd ed., Graduate Studies in Mathematics, Vol. 36, Amer. Math. Soc., Providence, RI, 2002.Google Scholar
- [127]B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, NJ, 1971.Google Scholar
- [128]B. Simon, Trace Ideals and Their Applications, 2nd ed., Mathematical Surveys and Monographs, Vol. 120, Amer. Math. Soc., Providence, RI, 2005.Google Scholar
- [129]G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Graduate Studies in Mathematics, Amer. Math. Soc., Vol. 99, RI, 2009.Google Scholar
- [130]G. Teschl, private communication.Google Scholar
- [131]B. Thaller, Normal forms of an abstract Dirac operator and applications to scattering theory, J. Math. Phys. 29, 249–257 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
- [132]B. Thaller, The Dirac Equation, Springer, Berlin, 1992.Google Scholar
- [133]C. Tretter, Linear operator pencils A − λB with discrete spectrum, Integral Eq. Operator Th. 37, 357–373 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
- [134]H. Volkmer, Sturm–Liouville problems with indefinite weights and Everitt’s inequality, Proc. Roy. Soc. Edinburgh 126A, 1097–1112 (1996).CrossRefMathSciNetGoogle Scholar
- [135]J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, Vol. 68, Springer, New York, 1980.Google Scholar
- [136]J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., Vol. 1258, Springer, Berlin, 1987.Google Scholar
- [137]A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, Vol. 121, Amer. Math. Soc., Providence, RI, 2005.Google Scholar
- [138]D.R. Yafaev, On the spectrum of the perturbed polyharmonic operator, in Topics in Mathematical Physics, Vol. 5. Spectral Theory, M.Sh. Birman (ed.), Consultants Bureau, New York, 1972, pp. 107–112.Google Scholar