Advertisement

Some Remarks on the Spectral Problem Underlying the Camassa–Holm Hierarchy

  • Fritz GesztesyEmail author
  • Rudi Weikard
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 240)

Abstract

We study particular cases of left-definite eigenvalue problems \(A\psi\;=\;B\psi\), with \(A\;\geq\;\varepsilon\it{I}\)for some \(\varepsilon\;>\;0\;\mathrm{and}\;\it{B}\; \mathrm{self-adjoint}\), but B not necessarily positive or negative definite, applicable, in particular, to the eigenvalue problem underlying the Camassa–Holm hierarchy. In fact, we will treat a more general version where A represents a positive definite Schrödinger or Sturm–Liouville operator T in \(L^2(\mathbb{R};dx)\) associated with a differential expression of the form \(\tau\;=\;-(d/dx)p(x)(d/dx)+q(x),x\in\mathbb{R}\), and B represents an operator of multiplication by \(r(x)\;\mathrm{in}\;L^2(\mathbb{R};dx)\), which, in general, is not a weight, that is, it is not nonnegative (or nonpositive) a.e. on \(\mathbb{R}\). In fact, our methods naturally permit us to treat certain classes of distributions (resp., measures) for the coefficients q and r and hence considerably extend the scope of this (generalized) eigenvalue problem, without having to change the underlying Hilbert space \(L^2(\mathbb{R};dx)\). Our approach relies on rewriting the eigenvalue problem \(A\psi\;=\;B\psi\) in the form \(A^{-1/2}BA^{-1/2}\chi\;=\lambda^{-1}\chi,\; \chi\;=\;A^{1/2}\psi\), and a careful study of (appropriate realizations of) the operator \(A^{-1/2}BA^{-1/2}\;\mathrm{in}\;L^2(\mathbb{R};dx)\).

In the course of our treatment, we review and employ various necessary and sufficient conditions for q to be relatively bounded (resp., compact) and relatively form bounded (resp., form compact) with respect to \(T_{0}\;=\;-d^2/dx^{2}\; \mathrm{defined\; on}\;H^2(\mathbb{R})\). In addition, we employ a supersymmetric formalism which permits us to factor the second-order operator T into a product of two firstorder operators familiar from (and inspired by) Miura’s transformation linking the KdV and mKdV hierarchy of nonlinear evolution equations. We also treat the case of periodic coefficients q and r, where q may be a distribution and r generates a measure and hence no smoothness is assumed for q and r.

Keywords

Camassa–Holm hierarchy left-definite spectral problems distributional coefficients Floquet theory supersymmetric formalism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. Adams and J.J.F. Fournier, Sobolev Spaces, second edition, Academic Press, 2003.Google Scholar
  2. [2]
    S. Alama, M. Avellaneda, P.A. Deift, and R. Hempel, On the existence of eigenvalues of a divergence-form operator A + λB in a gap of σ(A), Asymptotic Anal. 8, 311–344 (1994).zbMATHMathSciNetGoogle Scholar
  3. [3]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, with an Appendix by P. Exner, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005.Google Scholar
  4. [4]
    S. Albeverio, A. Kostenko, and M. Malamud, Spectral theory of semibounded Sturm– Liouville operators with local interactions on a discrete set, J. Math. Phys. 51, 102102 (2010), 24 pp.Google Scholar
  5. [5]
    T.G. Anderson and D.B. Hinton, Relative boundedness and compactness theory for second-order differential operators, J. Inequal. & Appl. 1, 375–400 (1997).zbMATHMathSciNetGoogle Scholar
  6. [6]
    F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm–Liouville problems, J. reine angew. Math. 375/376, 380–393 (1987).Google Scholar
  7. [7]
    J.-G. Bak and A.A. Shkalikov, Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials, Math. Notes 71, 587–594 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    R. Beals, Indefinite Sturm–Liouville problems and half-range completeness, J. Diff. Eq. 56, 391–407 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    R. Beals, D.H. Sattinger, and J. Szmigielski, Multipeakons and the classical moment problem, Adv. Math. 154, 229–257 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    R. Beals, D.H. Sattinger, and J. Szmigielski, Periodic peakons and Calogero– Fran¸coise flows, J. Inst. Math. Jussieu 4, No. 1, 1–27 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    J. Behrndt, On the spectral theory of singular indefinite Sturm–Liouville operators, J. Math. Anal. Appl. 334, 1439–1449 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    J. Behrndt, Spectral theory of elliptic differential operators with indefinite weights, Proc. Roy. Soc. Edinburgh 143A, 21–38 (2013).CrossRefMathSciNetGoogle Scholar
  13. [13]
    J. Behrndt, Q. Katatbeh, and C. Trunk, Non-real eigenvalues of singular indefinite Sturm–Liouville operators, Proc. Amer. Math. Soc. 137, 3797–3806 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    J. Behrndt, R. Möws, and C. Trunk, Eigenvalue estimates for singular left-definite Sturm–Liouville operators, J. Spectral Th. 1, 327–347 (2011).CrossRefzbMATHGoogle Scholar
  15. [15]
    J. Behrndt and F. Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights, J. Diff. Eq. 248, 2015–2037 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm–Liouville operators, J. Diff. Eq. 238, 491–519 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    C. Bennewitz, On the spectral problem associated with the Camassa–Holm equation, J. Nonlinear Math. Phys. 11, 422–434 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    C. Bennewitz, B. M. Brown, and R.Weikard, Inverse spectral and scattering theory for the half-line left-definite Sturm–Liouville problem, SIAM J. Math. Anal. 40, 2105–2131 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    C. Bennewitz, B.M. Brown, and R. Weikard, A uniqueness result for onedimensional inverse scattering, Math. Nachr. 285, 941–948 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    C. Bennewitz, B.M. Brown, and R. Weikard, Scattering and inverse scattering for a left-definite Sturm–Liouville problem, J. Diff. Eq. 253, 2380–2419 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    C. Bennewitz and W.N. Everitt, On second-order left-definite boundary value problems, in Ordinary Differential Equations and Operators, (Proceedings, Dundee, 1982), W.N. Everitt and R.T. Lewis (eds.), Lecture Notes in Math., Vol. 1032, Springer, Berlin, 1983, pp. 31–67.Google Scholar
  22. [22]
    A.M. Berthier, Spectral Theory and Wave Operators for the Schrödinger Equation, Research Notes in Mathematics, Vol. 71, Pitman, Boston, 1982.Google Scholar
  23. [23]
    P. Binding and A. Fleige, Conditions for an indefinite Sturm–Liouville Riesz basis property, in Recent Advances in Operator Theory in Hilbert and Krein Spaces, J. Behrndt, K.-H. Förster, and C. Trunk (eds.), Operator Theory: Advances and Applications, Birkhäuser, Basel, Vol. 198, 2009, pp. 87–95.Google Scholar
  24. [24]
    D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, and B. Simon, Witten index, axial anomaly, and Krein’s spectral shift function in supersymmetric quantum mechanics, J. Math. Phys. 28, 1512–1525 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    B.M. Brown, M.S.P. Eastham, and K.M. Schmidt, Periodic Differential Operators, Birkhäuser, 2013.Google Scholar
  26. [26]
    R.C. Brown and D.B. Hinton, Relative form boundedness and compactness for a second-order differential operator, J. Comp. Appl. Math. 171, 123–140 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    R. Carlone, M. Malamud, and A. Posilicano, On the spectral theory of Gesztesy– Šeba realizations of 1-D Dirac operators with point interactions on a discrete set, J. Diff. Eq. 254, 3835–3902 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    S. Clark and F. Gesztesy, Weyl–Titchmarsh M-function asymptotics and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354, 3475–3534 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    S. Clark and F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators, Proc. Roy. Soc. Edinburgh 133A, 747–758 (2003).CrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Constantin, A general-weighted Sturm–Liouville problem, Scuola Norm. Sup. 24, 767–782 (1997).zbMATHMathSciNetGoogle Scholar
  31. [31]
    A. Constantin, On the spectral problem for the periodic Camassa–Holm equation, J. Math. Anal. Appl. 210, 215–230 (1997).CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    A. Constantin, On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155, 352–363(1998).CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    A. Constantin, On the scattering problem for the Camassa–Holm equation, Proc. Roy. Soc. London A 457, 953–970 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    A. Constantin, V.S. Gerdjikov, and R.I. Rossen, Inverse scattering transform for the Camassa–Holm equation, Inverse Probl. 22, 2197–2207 (2006).CrossRefzbMATHGoogle Scholar
  35. [35]
    A. Constantin and J. Lenells, On the inverse scattering approach to the Camassa– Holm equation, J. Nonlinear Math. Phys. 10, 252–255 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    A. Constantin and H.P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math. 52, 949–982 (1999).CrossRefMathSciNetGoogle Scholar
  37. [37]
    K. Daho and H. Langer, Sturm–Liouville operators with an indefinite weight function: The Periodic case, Radcvi Mat. 2, 165–188 (1986).zbMATHMathSciNetGoogle Scholar
  38. [38]
    R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods, Springer, Berlin, 2000.zbMATHGoogle Scholar
  39. [39]
    P.A. Deift, Applications of a commutation formula, Duke Math. J. 45, 267–310 (1978).CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    P. Djakov and B. Mityagin, Multiplicities of the eigenvalues of periodic Dirac operators, J. Diff. Eq. 210, 178–216 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    P. Djakov and B. Mityagin, Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials, Integral Transforms Special Fcts. 20, nos. 3-4, 265–273 (2009).Google Scholar
  42. [42]
    P. Djakov and B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. PDE 6, no. 2, 95–165 (2009).Google Scholar
  43. [43]
    P. Djakov and B. Mityagin, Fourier method for one-dimensional Schrödinger operators with singular periodic potentials, in Topics in Operator Theory, Vol. 2: Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, Vol. 203, Birkhäuser, Basel, 2010, pp. 195–236.Google Scholar
  44. [44]
    P. Djakov and B. Mityagin, Criteria for existence of Riesz bases consisting of root functions of Hill and 1d Dirac operators, J. Funct. Anal. 263, 2300–2332 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    N. Dunford and J.T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience, New York, 1988.Google Scholar
  46. [46]
    M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh and London, 1973.Google Scholar
  47. [47]
    J. Eckhardt, Direct and inverse spectral theory of singular left-definite Sturm– Liouville operators, J. Diff. Eq. 253, 604–634 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Supersymmetry and Schrödinger- type operators with distributional matrix-valued potentials, arXiv:1206.4966, J. Spectral Theory, to appear.Google Scholar
  49. [49]
    J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, Opuscula Math. 33, 467– 563 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Inverse spectral theory for Sturm–Liouville operators with distributional coefficients, J. London Math. Soc. (2) 88, 801–828 (2013).Google Scholar
  51. [51]
    J. Eckhardt and G. Teschl, On the isospectral problem of the dispersionless Camassa–Holm equation, Adv. Math. 235, 469–495 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    J. Eckhardt and G. Teschl, Sturm–Liouville operators with measure-valued coefficients, J. Analyse Math. 120, 151–224 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    D.E. Edmunds andW.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.Google Scholar
  54. [54]
    W.G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics, Vol. 433, Springer, Berlin, 1975.Google Scholar
  55. [55]
    J. Fleckinger and M.L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295, 305–324 (1986).CrossRefzbMATHMathSciNetGoogle Scholar
  56. [56]
    G. Freiling, V. Rykhlov, and V. Yurko, Spectral analysis for an indefinite singular Sturm–Liouville problem, Appl. Anal. 81, 1283–1305 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  57. [57]
    F. Gesztesy, On the modified Korteweg-de Vries equation, in Differential Equations with Applications in Biology, Physics, and Engineering, J.A. Goldstein, F. Kappel, and W. Schappacher (eds.), Marcel Dekker, New York, 1991, pp. 139–183.Google Scholar
  58. [58]
    F. Gesztesy, Quasi-periodic, finite-gap solutions of the modified Korteweg-de Vries equation, in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, S. Albeverio, J.E. Fenstad, H. Holden, and T. Lindstrøm (eds.), Vol. 1, Cambridge Univ. Press, Cambridge, 1992, pp. 428–471.Google Scholar
  59. [59]
    F. Gesztesy, A complete spectral characterizaton of the double commutation method, J. Funct. Anal. 117, 401–446 (1993).CrossRefzbMATHMathSciNetGoogle Scholar
  60. [60]
    F. Gesztesy and H. Holden, Algebro-geometric solutions of the Camassa–Holm hierarchy, Rev. Mat. Iberoamericana 19, 73–142 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  61. [61]
    F. Gesztesy and H. Holden, Soliton Equations and Their Algebro-Geometric Solutions. Vol. I: (1 + 1)-Dimensional Continuous Models, Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge Univ. Press, 2003.Google Scholar
  62. [62]
    F. Gesztesy and H. Holden, Real-valued algebro-geometric solutions of the Camassa– Holm hierarchy, Phil. Trans. Roy. Soc. A 366, 1025–1054 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  63. [63]
    F. Gesztesy, M. Malamud, M. Mitrea, and S. Naboko, Generalized polar decompositions for closed operators in Hilbert spaces and some applications, Integral Eq. Operator Th. 64, 83–113 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    F. Gesztesy, M. Mitrea. Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Diff. Eq. 247, 2871–2896 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    F. Gesztesy and R. Nichols, Weak convergence of spectral shift functions for onedimensional Schrödinger operators, Math. Nachr. 285, 1799–1838 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  66. [66]
    F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV -equation, Trans. Amer. Math. Soc. 324, 465–525 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  67. [67]
    F. Gesztesy and R. Svirsky, (m)KdV -Solitons on the background of quasi-periodic finite-gap solutions, Memoirs Amer. Math. Soc. 118 (563), 1–88 (1995).Google Scholar
  68. [68]
    I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965.Google Scholar
  69. [69]
    T. Godoy, J.-P. Gossez, S. Paczka, On the asymptotic behavior of the principal eigenvalues of some elliptic problems, Ann. Mat. Pura Appl. 189, 497–521 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.Google Scholar
  71. [71]
    V. Hardt, A. Konstantinov, and R. Mennicken, On the spectrum of the product of closed operators, Math. Nachr. 215, 91–102 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  72. [72]
    P. Hartman Differential equations with non-oscillatory eigenfunctions, Duke Math. J. 15, 697–709 (1948).Google Scholar
  73. [73]
    R. Hempel, A left-definite generalized eigenvalue problem for Schrödinger operators, Habilitation, Dept. of Mathematics, University of Munich, Germany, 1987.Google Scholar
  74. [74]
    P. Hess, On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions, Math. Ann. 270, 467–475 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  75. [75]
    P. Hess, On the asymptotic distribution of eigenvalues of some nonselfadjoint problems, Bull. London Math. Soc. 18, 181–184 (1986).CrossRefzbMATHMathSciNetGoogle Scholar
  76. [76]
    P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Commun. Partial Diff. Eq. 5, 999–1030 (1980).CrossRefzbMATHMathSciNetGoogle Scholar
  77. [77]
    D. B. Hinton and S.C. Melescue, Relative boundedness-compactness inequalities for a second order differential operator, Math. Ineq. & Appls. 4, 35–52 (2001).zbMATHMathSciNetGoogle Scholar
  78. [78]
    R.O. Hryniv and Ya.V. Mykytyuk, 1D Schrödinger operators with periodic singular potentials, Methods Funct. Anal. Topology 7, no. 4, 31–42 (2001).Google Scholar
  79. [79]
    R.O. Hryniv and Ya.V. Mykytyuk, 1D Schrödinger operators with singular Gordon potentials, Methods Funct. Anal. Topology 8, no. 1, 36–48 (2002).Google Scholar
  80. [80]
    R.O. Hryniv and Ya.V. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials, Meth. Funct. Anal. Topology 18, 152–159 (2012).Google Scholar
  81. [81]
    B.J. Jaye, V.G. Maz’ya, and I.E. Verbitsky, Existence and regularity of positive solutions of elliptic equations of Schrödinger type, J. Analyse Math. 118, 577–621 (2012).Google Scholar
  82. [82]
    T. Kappeler and C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal. 186, 62–91 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  83. [83]
    T. Kappeler, P. Perry, M. Shubin, and P. Topalov, The Miura map on the line, Int. Math. Res. Notices, 2005, No. 50.Google Scholar
  84. [84]
    T. Kappeler and P. Topalov, Global fold structure of the Miura map on L 2(\( \mathbb{T} \)), Int. Math. Res. Notices 2004, No. 39, 2039–2068.Google Scholar
  85. [85]
    I.M. Karabash, A functional model, eigenvalues, and finite singular critical points for indefinite Sturm–Liouville operators, in Topics in Operator Theory. Volume 2. Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, Vol. 203, Birkhäuser, Basel, 2010, pp. 247–287.Google Scholar
  86. [86]
    I.M. Karabash and M.M. Malamud, Indefinite _ Sturm–Liouville operators (sgn x) \( \left( { - \frac{{{d^2}}}{{d{x^2}}}\, + \,q(x)} \right) \) with finite-zone potentials, Operators and Matrices 1, 301–368 (2007).Google Scholar
  87. [87]
    I.M. Karabash, A.S. Kostenko, and M.M. Malamud, The similarity problem for J-nonnegative Sturm–Liouville operators, J. Diff. Eq. 246, 964–997 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  88. [88]
    I. Karabash and C. Trunk, Spectral properties of singular Sturm–Liouville operators with indefinite weight sgn x, Proc. Roy. Soc. Edinburgh 139A, 483–503 (2009).CrossRefMathSciNetGoogle Scholar
  89. [89]
    M. Kato, Estimates for the eigenvalues of Hill’s operator with distributional coefficients, Tokyo J. Math. 33, 361–364 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  90. [90]
    T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.Google Scholar
  91. [91]
    Q. Kong, H. Wu, and A. Zettl, Left-definite Sturm–Liouville problems, J. Diff. Eq. 177, 1–26 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  92. [92]
    Q. Kong, H. Wu, and A. Zettl, Singular left-definite Sturm–Liouville problems, J. Diff. Eq. 206, 1–29 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  93. [93]
    Q. Kong, H. Wu, A. Zettl, and M. Möller, Indefinite Sturm–Liouville problems, Proc. Roy. Soc. Edinburgh 133A, 639–652 (2003).CrossRefGoogle Scholar
  94. [94]
    E. Korotyaev, Inverse problem for periodic “weighted” operators, J. Funct. Anal. 170, 188–218 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  95. [95]
    E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Notices 2003, No. 37, 2019–2031.Google Scholar
  96. [96]
    E. Korotyaev, Inverse spectral problem for the periodic Camassa–Holm equation, J. Nonlinear Math. Phys. 11, 499–507 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  97. [97]
    E. Korotyaev, Sharp asymptotics of the quasimomentum, Asymptot. Anal. 80, 269–287 (2012).zbMATHMathSciNetGoogle Scholar
  98. [98]
    A. Kostenko, The similarity problem for indefinite Sturm–Liouville operators with periodic coefficients, Operators and Matrices 5, 707–722 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  99. [99]
    J.L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14, 233–241 (1962).CrossRefzbMATHMathSciNetGoogle Scholar
  100. [100]
    B.V. Loginov and O.V. Makeeva, The pseudoperturbation method in generalized eigenvalue problems, Dokl. Math. 77, 194–197 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  101. [101]
    M. Marletta and A. Zettl, Counting and computing eigenvalues of left-definite Sturm–Liouville problems, J. Comp. Appl. Math. 148, 65–75 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  102. [102]
    M. Marletta and A. Zettl, Floquet theory for left-definite Sturm–Liouville problems, J. Math. Anal. Appl. 305, 477–482 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  103. [103]
    V.G. Maz’ya and T.O. Shaposhnikova, Theory of Sobolev Multipliers, Springer, Berlin, 2009.Google Scholar
  104. [104]
    V.G. Maz’ya and I.E. Verbitsky, Boundedness and compactness criteria for the onedimensional Schrödinger operator, in Function Spaces, Interpolation Theory and Related Topics, M. Cwikel, M. Engliš, A. Kufner, L.-E. Persson, G. Sparr (eds.), de Gruyter, Berlin, 2002, pp. 369–382.Google Scholar
  105. [105]
    V.G. Maz’ya and I.E. Verbitsky, The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188, 263–302 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  106. [106]
    V.G. Maz’ya and I.E. Verbitsky, Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162, 81–136 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  107. [107]
    V.G. Maz’ya and I.E. Verbitsky, Form boundedness of the general second-order differential operator, Commun. Pure Appl. Math. 59, 1286–1329 (2006).CrossRefMathSciNetGoogle Scholar
  108. [108]
    H.P. McKean, Addition for the acoustic equation, Commun. Pure Appl. Math. 54, 1271–1288 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  109. [109]
    H.P. McKean, Fredholm determinants and the Camassa–Holm hierarchy, Commun. Pure Appl. Math. 56, 638–680 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  110. [110]
    H.P. McKean, The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies, Commun. Pure Appl. Math. 56, 998–1015 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  111. [111]
    H. P. McKean, Breakdown of the Camassa–Holm equation, Commun. Pure Appl. Math. 57, 416–418 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  112. [112]
    W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.Google Scholar
  113. [113]
    V.A. Mikhailets and V.M. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 14, no. 2, 184–200 (2008).Google Scholar
  114. [114]
    V.A. Mikhailets and V.M. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 15, no. 1, 31–40 (2009).Google Scholar
  115. [115]
    E. M¨uller-Pfeifer, Spectral Theory of Ordinary Differential Operators, Ellis Horwood, Chichester, 1981.Google Scholar
  116. [116]
    M.A. Naimark, Linear Differential Operators, Part II, Ungar, New York, 1968.Google Scholar
  117. [117]
    M.I. Neiman-zade and A.A. Shkalikov, Strongly elliptic operators with singular coefficients, Russ. J. Math. Phys. 13, 70–78 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  118. [118]
    W.V. Petryshyn, On the eigenvalue problem Tu − λSu = 0 with unbounded and nonsymmetric operators T and S, Phil. Trans. Roy. Soc. London A 262, 413–458 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
  119. [119]
    F. Philipp, Indefinite Sturm–Liouville operators with periodic coefficients, Operators and Matrices 7, 777–811 (2013).zbMATHMathSciNetGoogle Scholar
  120. [120]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. III: Scattering Theory, Academic Press, New York, 1979.Google Scholar
  121. [121]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York, 1978.Google Scholar
  122. [122]
    F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122, 343–368 (1951).CrossRefzbMATHMathSciNetGoogle Scholar
  123. [123]
    A.M Savchuk and A.A. Shkalikov, Sturm–Liouville operators with singular potentials, Math. Notes 66, 741–753 (1999).Google Scholar
  124. [124]
    A.M. Savchuk and A.A. Shkalikov, Sturm–Liouville operators with distribution potentials, Trans. Moscow Math. Soc. 2003, 143–192.Google Scholar
  125. [125]
    M. Schechter, Operator Methods in Quantum Mechanics, North–Holland, New York, 1981.Google Scholar
  126. [126]
    M. Schechter, Principles of Functional Analysis, 2nd ed., Graduate Studies in Mathematics, Vol. 36, Amer. Math. Soc., Providence, RI, 2002.Google Scholar
  127. [127]
    B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, NJ, 1971.Google Scholar
  128. [128]
    B. Simon, Trace Ideals and Their Applications, 2nd ed., Mathematical Surveys and Monographs, Vol. 120, Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  129. [129]
    G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Graduate Studies in Mathematics, Amer. Math. Soc., Vol. 99, RI, 2009.Google Scholar
  130. [130]
    G. Teschl, private communication.Google Scholar
  131. [131]
    B. Thaller, Normal forms of an abstract Dirac operator and applications to scattering theory, J. Math. Phys. 29, 249–257 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  132. [132]
    B. Thaller, The Dirac Equation, Springer, Berlin, 1992.Google Scholar
  133. [133]
    C. Tretter, Linear operator pencils A − λB with discrete spectrum, Integral Eq. Operator Th. 37, 357–373 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  134. [134]
    H. Volkmer, Sturm–Liouville problems with indefinite weights and Everitt’s inequality, Proc. Roy. Soc. Edinburgh 126A, 1097–1112 (1996).CrossRefMathSciNetGoogle Scholar
  135. [135]
    J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, Vol. 68, Springer, New York, 1980.Google Scholar
  136. [136]
    J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., Vol. 1258, Springer, Berlin, 1987.Google Scholar
  137. [137]
    A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, Vol. 121, Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  138. [138]
    D.R. Yafaev, On the spectrum of the perturbed polyharmonic operator, in Topics in Mathematical Physics, Vol. 5. Spectral Theory, M.Sh. Birman (ed.), Consultants Bureau, New York, 1972, pp. 107–112.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations