Advertisement

Generalized Repeated Interaction Model and Transfer Functions

  • Santanu DeyEmail author
  • Kalpesh J. Haria
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 240)

Abstract

Using a scheme involving a lifting of a row contraction we introduce a toy model of repeated interactions between quantum systems. In this model there is an outgoing Cuntz scattering system involving two wandering subspaces. We associate to this model an input/output linear system which leads to a transfer function. This transfer function is a multi-analytic operator, and we show that it is inner if we assume that the system is observable. Finally it is established that transfer functions coincide with characteristic functions of associated liftings.

Keywords

Repeated interaction quantum system multivariate operator theory row contraction contractive lifting outgoing Cuntz scattering system transfer function multi-analytic operator input-output formalism linear system observability scattering theory characteristic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.A. Ball, G. Groenewald, T. Malakorn, Conservative structured noncommutative multidimensional linear systems. The state space method generalizations and applications, 179–223, Oper. Theory Adv. Appl., 161, Birkhäuser, Basel (2006).Google Scholar
  2. [2]
    B.V.R. Bhat, An index theory for quantum dynamical semigroups, Trans. Amer. Math. Soc., 348 (1996) 561–583.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    J.A. Ball, V. Vinnikov, Lax–Phillips scattering and conservative linear systems: a Cuntz-algebra multidimensional setting, Mem. Amer. Math. Soc., 178 (2005).Google Scholar
  4. [4]
    S. Dey, R. Gohm, Characteristic functions for ergodic tuples, Integral Equations and Operator Theory, 58 (2007), 43–63.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    S. Dey,; R. Gohm, Characteristic functions of liftings, J. Operator Theory, 65 (2011), 17–45.zbMATHMathSciNetGoogle Scholar
  6. [6]
    E. Fornasini,; G. Marchesini, Doubly-indexed Dynamical Systems: State Space Models and Structural Properties, Math. Systems Theory, 12 (1978), 59–72.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Gough, R. Gohm, Yanagisawa: Linear Quantum feedback Networks, Phys. Rev. A, 78 (2008).Google Scholar
  8. [8]
    R. Gohm, Noncommutative stationary processes, Lecture Notes in Mathematics, 1839, Springer-Verlag, Berlin (2004).Google Scholar
  9. [9]
    R. Gohm, Non-commutative Markov chains and multi-analytic operators, J. Math. Anal. Appl., 364 (2010), 275–288.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    R. Gohm, Transfer function for pairs of wandering subspaces, Spectral theory,mathematical system theory, evolution equations, differential and difference equations, 385– 398, Oper. Theory Adv. Appl., 221, Birkhäuser/Springer Basel AG, Basel, (2012).Google Scholar
  11. [11]
    B. Kümmerer, H. Maassen, A scattering theory for Markov chains, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 161–176.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    P.D. Lax, R.S. Phillips, Scattering theory, Pure and Applied Mathematics 26 Academic press, New York-London, (1967).Google Scholar
  13. [13]
    G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc., 316 (1989), 523–536.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory, 22 (1989), 51–71.zbMATHMathSciNetGoogle Scholar
  15. [15]
    G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann., 303 (1995), 31–46.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    G. Popescu, Poisson transforms on some C -algebras generated by isometries, J. Funct. Anal., 161 (1999), 27–61.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    G. Popescu, Free holomorphic functions on the unit ball of \( \mathcal{B} (\mathcal{H})^{n} \), J. Funct. Anal., 241 (2006), 268–333.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    M. Reed, B. Simon, Methods of modern mathematical physics. III. Scattering theory. Academic PressGoogle Scholar
  19. [19]
    [Harcourt Brace Jovanovich, Publishers], New York-London, (1979).Google Scholar
  20. [20]
    B. Sz.-Nagy, C. Foias, Harmonic analysis of operators on Hilbert space, North– Holland Publ., Amsterdam-Budapest (1970).Google Scholar
  21. [21]
    M. Yanagisawa, H. Kimura, Transfer function approach to quantum control, part I: Dynamics of Quantum feedback systems, IEEE Transactions on Automatic control, 48 (2003), no. 12, 2107–2120.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations