Skip to main content

Taylor Approximations of Operator Functions

  • Conference paper
  • First Online:
Operator Theory in Harmonic and Non-commutative Analysis

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 240))

Abstract

This survey on approximations of perturbed operator functions addresses recent advances and some of the successful methods.

Mathematics Subject Classification (2010). Primary 47A55, 47B10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.M. Adamjan, H. Neidhardt, On the summability of the spectral shift function for pair of contractions and dissipative operators, J. Operator Theory 24 (1990), no. 1, 187–205.

    MATH  MathSciNet  Google Scholar 

  2. V.M. Adamjan, B.S. Pavlov, Trace formula for dissipative operators, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979, no. 2, 5–9, 118 (Russian).

    Google Scholar 

  3. A.B. Aleksandrov, V.V. Peller, Trace formulae for perturbations of class S m , J. Spectral Theory, 1 (2011), no. 1, 1–26.

    Google Scholar 

  4. A.B. Aleksandrov, V.V. Peller, D. Potapov, F.A. Sukochev, Functions of normal operators under perturbations, Adv. Math. 226 (2011), no. 6, 5216–5251.

    Article  MATH  MathSciNet  Google Scholar 

  5. N.A. Azamov, A.L. Carey, F.A. Sukochev, The spectral shift function and spectral flow, Comm. Math. Phys. 276 (2007), no. 1, 51–91.

    Article  MATH  MathSciNet  Google Scholar 

  6. N.A. Azamov, A.L. Carey, P.G. Dodds, F.A. Sukochev, Operator integrals, spectral shift, and spectral flow, Canad. J. Math. 61 (2009), no. 2, 241–263.

    Article  MATH  MathSciNet  Google Scholar 

  7. N.A. Azamov, P.G. Dodds, F.A. Sukochev, The Krein spectral shift function in semifinite von Neumann algebras, Integral Equations Operaor Theory 55 (2006), 347–362.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.-T. Benameur, A.L. Carey, J. Phillips, A. Rennie, F.A. Sukochev, K.P. Wojciechowski, An analytic approach to spectral flow in von Neumann algebras. Analysis, geometry and topology of elliptic operators, 297–352, World Sci. Publ., Hackensack, NJ, 2006.

    Google Scholar 

  9. M. Sh. Birman, A.B. Pushnitski, Spectral shift function, amazing and multifaceted. Dedicated to the memory of Mark Grigorievich Krein (1907–1989), Integral Equations Operator Theory 30 (1998), no. 2, 191–199.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.Sh. Birman, M.Z. Solomyak, Remarks on the spectral shift function, Zapiski Nauchn. Semin. LOMI 27 (1972), 33–46 (Russian). Translation: J. Soviet Math. 3 (1975), 408–419.

    Google Scholar 

  11. M.Sh. Birman, M. Solomyak, Double operator integrals in a Hilbert space, Integral Equations Operator Theory 47 (2003), no. 2, 131–168.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Sh. Birman, D.R. Yafaev, The spectral shift function. The papers of M.G. Krein and their further development, Algebra i Analiz 4 (1992), no. 5, 1–44 (Russian). Translation: St. Petersburg Math. J. 4 (1993), no. 5, 833–870.

    Google Scholar 

  13. J.-M. Bouclet, Trace formulae for relatively Hilbert-Schmidt perturbations, Asymptot. Anal. 32 (2002), 257–291.

    MATH  MathSciNet  Google Scholar 

  14. R.W. Carey, J.D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras, Acta Math. 138 (1977), 153–218.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Caspers, S. Montgomery-Smith, D. Potapov, F. Sukochev, The best constants for operator Lipschitz functions on Schatten classes, preprint.

    Google Scholar 

  16. A.H. Chamseddine, A. Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), 731–750.

    Article  MATH  MathSciNet  Google Scholar 

  17. Yu.L. Daleckii, S.G. Krein, Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations, (Russian) Vorone. Gos. Univ. Trudy Sem. Funkcional. Anal. 1956 (1956), no. 1, 81–105.

    MathSciNet  Google Scholar 

  18. K. Dykema, A. Skripka, Higher order spectral shift, J. Funct. Anal. 257 (2009), 1092–1132.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Dykema, A. Skripka, Perturbation formulas for traces on normed ideals, Comm. Math. Phys. 325 (2014), no 3, 1107–1138.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y.B. Farforovskaya, An estimate of the nearness of the spectral decompositions of self-adjoint operators in the Kantorovič–Rubinštein metric, Vestnik Leningrad Univ. 22 (1967), no. 19, 155–156.

    MathSciNet  Google Scholar 

  21. Y.B. Farforovskaya, The connection of the Kantorovič–Rubinštein metric for spectral resolutions of self-adjoint operators with functions of operators, Vestnik Leningrad Univ. 23 (1968), no. 19, 94–97.

    MathSciNet  Google Scholar 

  22. Y.B. Farforovskaya, An example of a Lipschitz function of self-adjoint operators with non-nuclear difference under a nuclear perturbation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 146–153.

    MATH  Google Scholar 

  23. F. Gesztesy, A. Pushnitski, B. Simon, On the Koplienko spectral shift function, I. Basics, Zh. Mat. Fiz. Anal. Geom. 4 (2008), no. 1, 63–107.

    MATH  MathSciNet  Google Scholar 

  24. E. Kissin, D. Potapov, V. Shulman, F. Sukochev, Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, Proc. London Math. Soc. 105 (2012), no. 4, 661–702.

    Article  MATH  MathSciNet  Google Scholar 

  25. L.S. Koplienko, Local conditions for the existence of the function of spectral shift. Investigations on linear operators and the theory of functions, VIII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 73 (1977), 102–117 (Russian). Translation: J. Soviet Math. 34 (1986), no. 6, 2080–2090.

    Google Scholar 

  26. L.S. Koplienko, Trace formula for perturbations of nonnuclear type, Sibirsk. Mat. Zh. 25 (1984), 62–71 (Russian). Translation: Siberian Math. J. 25 (1984), 735–743.

    Google Scholar 

  27. M.G. Krein, On a trace formula in perturbation theory, Matem. Sbornik 33 (1953), 597–626 (Russian).

    MathSciNet  Google Scholar 

  28. M.G. Krein, On the perturbation determinant and the trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268–271 (Russian). Translation: Soviet Math. Dokl. 3 (1962), 707–710.

    Google Scholar 

  29. M.G. Krein, Some new studies in the theory of perturbations of self-adjoint operators, First Math. Summer School, Part I, 1964, pp. 103–187, Izdat. “Naukova Dumka”, Kiev (Russian). Translation: Topics in differential and integral equations and operator theory, Birkhäuser Verlag, Basel, 1983, pp. 107–172.

    Google Scholar 

  30. M.G. Krein, Perturbation determinants and a trace formula for some classes of pairs of operators, J. Operator Theory 17 (1987), no. 1, 129–187 (Russian).

    MathSciNet  Google Scholar 

  31. H. Langer, Eine Erweiterung der Spurformel der Störungstheorie, Math. Nachr. 30, 123–135 (1965) (German).

    Google Scholar 

  32. I.M. Lifshits, On a problem of the theory of perturbations connected with quantum statistics, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 1 (47), 171–180 (Russian).

    Google Scholar 

  33. S. Lord, F. Sukochev, D. Zanin, Singular Traces, de Gruyter Studies in Mathematics, 46, Walter de Gruyter & Co., Berlin, 2012.

    Google Scholar 

  34. K.A. Makarov, A. Skripka, M. Zinchenko, On perturbation determinant for antidissipative operators, preprint.

    Google Scholar 

  35. H. Neidhardt, Scattering matrix and spectral shift of the nuclear dissipative scattering theory. Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), 237–250, Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987.

    Google Scholar 

  36. H. Neidhardt, Scattering matrix and spectral shift of the nuclear dissipative scattering theory. II. J. Operator Theory 19 (1988), no. 1, 43–62.

    Google Scholar 

  37. H. Neidhardt, Spectral shift function and Hilbert–Schmidt perturbation: extensions of some work of L.S. Koplienko, Math. Nachr. 138 (1988), 7–25.

    Article  MATH  MathSciNet  Google Scholar 

  38. V.V. Peller, Hankel operators in the perturbation theory of unbounded self-adjoint operators. Analysis and partial differential equations, Lecture Notes in Pure and Applied Mathematics, 122, Dekker, New York, 1990, pp. 529–544.

    Google Scholar 

  39. V.V. Peller, An extension of the Koplienko–Neidhardt trace formulae, J. Funct.Anal. 221 (2005), 456–481.

    Google Scholar 

  40. V.V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 223 (2006), 515–544.

    Article  MathSciNet  Google Scholar 

  41. V.V. Peller, The behavior of functions of operators under perturbations. A glimpse at Hilbert space operators, 287–324, Oper. Theory Adv. Appl., 207, Birkhäuser Verlag, Basel, 2010.

    Google Scholar 

  42. G. Pisier, Q. Xu, Noncommutative L p -spaces. Handbook of the Geometry of Banach spaces, 2, North-Holland, Amsterdam, 2003, pp. 1459–1517.

    Google Scholar 

  43. D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order, Invent. Math., 193 (2013), no. 3, 501–538.

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Potapov, A. Skripka, F. Sukochev, On Hilbert–Schmidt compatibility, Oper. Matrices, 7 (2013), no. 1, 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  45. D. Potapov, A. Skripka, F. Sukochev, Higher order spectral shift for contractions, Proc. London Math. Soc. 108 (2014), no 3, 327–349.

    Article  MATH  MathSciNet  Google Scholar 

  46. D. Potapov, F. Sukochev, Operator-Lipschitz functions in Schatten–von Neumann classes, Acta Math., 207 (2011), 375–389.

    Article  MATH  MathSciNet  Google Scholar 

  47. D. Potapov, F. Sukochev, Koplienko spectral shift function on the unit circle, Comm. Math. Phys., 309 (2012), 693–702.

    Article  MATH  MathSciNet  Google Scholar 

  48. D. Potapov, F. Sukochev, D. Zanin, Krein’s trace theorem revisited, J. Spectral Theory, in press.

    Google Scholar 

  49. A.V. Rybkin, The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances, Mat. Sb. (N.S.) 125(167) (1984), no. 3, 420–430 (Russian).

    Google Scholar 

  50. A.V. Rybkin, The spectral shift function, the characteristic function of a contraction and a generalized integral, Mat. Sb. 185 (1994), no. 10, 91–144 (Russian). Translation: Russian Acad. Sci. Sb. Math. 83 (1995), no. 1, 237–281.

    Google Scholar 

  51. A.V. Rybkin, On A-integrability of the spectral shift function of unitary operators arising in the Lax–Phillips scattering theory, Duke Math. J. 83 (1996), no. 3, 683–699.

    Article  MATH  MathSciNet  Google Scholar 

  52. B. Simon, Trace ideals and their applications. Second edition. Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence, RI, 2005.

    Google Scholar 

  53. A. Skripka, Trace inequalities and spectral shift, Oper. Matrices 3 (2009), no. 2, 241–260.

    Article  MathSciNet  Google Scholar 

  54. A. Skripka, Higher order spectral shift, II. Unbounded case, Indiana Univ. Math. J. 59 (2010), no. 2, 691–706.

    Article  MATH  MathSciNet  Google Scholar 

  55. A. Skripka, Multiple operator integrals and spectral shift, Illinois J. Math., 55 (2011), no. 1, 305–324.

    MATH  MathSciNet  Google Scholar 

  56. A. Skripka, Asymptotic expansions for trace functionals, J. Funct. Anal. 266 (2014), no 5, 2845–2866.

    Article  MathSciNet  Google Scholar 

  57. B. Sz.-Nagy, C. FoiaĹź, Harmonic analysis of operators on Hilbert space. Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London, 1970.

    Google Scholar 

  58. W.D. van Suijlekom, Perturbations and operator trace functions, J. Funct. Anal. 260 (2011), no. 8, 2483–2496.

    Article  MATH  MathSciNet  Google Scholar 

  59. D.R. Yafaev, Mathematical scattering theory: general theory, Providence, R.I., AMS, 1992.

    MATH  Google Scholar 

  60. D.R. Yafaev, The Schrödinger operator: perturbation determinants, the spectral shift function, trace identities, and more, Funktsional. Anal. i Prilozhen. 41 (2007), no. 3, 60–83 (Russian). Translation: Funct. Anal. Appl. 41 (2007), no. 3, 217–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Skripka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Skripka, A. (2014). Taylor Approximations of Operator Functions. In: Ball, J., Dritschel, M., ter Elst, A., Portal, P., Potapov, D. (eds) Operator Theory in Harmonic and Non-commutative Analysis. Operator Theory: Advances and Applications, vol 240. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-06266-2_12

Download citation

Publish with us

Policies and ethics