Taylor Approximations of Operator Functions

  • Anna SkripkaEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 240)


This survey on approximations of perturbed operator functions addresses recent advances and some of the successful methods.


Perturbation theory Taylor approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.M. Adamjan, H. Neidhardt, On the summability of the spectral shift function for pair of contractions and dissipative operators, J. Operator Theory 24 (1990), no. 1, 187–205.zbMATHMathSciNetGoogle Scholar
  2. [2]
    V.M. Adamjan, B.S. Pavlov, Trace formula for dissipative operators, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979, no. 2, 5–9, 118 (Russian).Google Scholar
  3. [3]
    A.B. Aleksandrov, V.V. Peller, Trace formulae for perturbations of class S m, J. Spectral Theory, 1 (2011), no. 1, 1–26.Google Scholar
  4. [4]
    A.B. Aleksandrov, V.V. Peller, D. Potapov, F.A. Sukochev, Functions of normal operators under perturbations, Adv. Math. 226 (2011), no. 6, 5216–5251.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    N.A. Azamov, A.L. Carey, F.A. Sukochev, The spectral shift function and spectral flow, Comm. Math. Phys. 276 (2007), no. 1, 51–91.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    N.A. Azamov, A.L. Carey, P.G. Dodds, F.A. Sukochev, Operator integrals, spectral shift, and spectral flow, Canad. J. Math. 61 (2009), no. 2, 241–263.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    N.A. Azamov, P.G. Dodds, F.A. Sukochev, The Krein spectral shift function in semifinite von Neumann algebras, Integral Equations Operaor Theory 55 (2006), 347–362.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    M.-T. Benameur, A.L. Carey, J. Phillips, A. Rennie, F.A. Sukochev, K.P. Wojciechowski, An analytic approach to spectral flow in von Neumann algebras. Analysis, geometry and topology of elliptic operators, 297–352, World Sci. Publ., Hackensack, NJ, 2006.Google Scholar
  9. [9]
    M. Sh. Birman, A.B. Pushnitski, Spectral shift function, amazing and multifaceted. Dedicated to the memory of Mark Grigorievich Krein (19071989), Integral Equations Operator Theory 30 (1998), no. 2, 191–199.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    M.Sh. Birman, M.Z. Solomyak, Remarks on the spectral shift function, Zapiski Nauchn. Semin. LOMI 27 (1972), 33–46 (Russian). Translation: J. Soviet Math. 3 (1975), 408–419.Google Scholar
  11. [11]
    M.Sh. Birman, M. Solomyak, Double operator integrals in a Hilbert space, Integral Equations Operator Theory 47 (2003), no. 2, 131–168.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    M. Sh. Birman, D.R. Yafaev, The spectral shift function. The papers of M.G. Krein and their further development, Algebra i Analiz 4 (1992), no. 5, 1–44 (Russian). Translation: St. Petersburg Math. J. 4 (1993), no. 5, 833–870.Google Scholar
  13. [13]
    J.-M. Bouclet, Trace formulae for relatively Hilbert-Schmidt perturbations, Asymptot. Anal. 32 (2002), 257–291.zbMATHMathSciNetGoogle Scholar
  14. [14]
    R.W. Carey, J.D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras, Acta Math. 138 (1977), 153–218.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    M. Caspers, S. Montgomery-Smith, D. Potapov, F. Sukochev, The best constants for operator Lipschitz functions on Schatten classes, preprint.Google Scholar
  16. [16]
    A.H. Chamseddine, A. Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), 731–750.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Yu.L. Daleckii, S.G. Krein, Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations, (Russian) Vorone. Gos. Univ. Trudy Sem. Funkcional. Anal. 1956 (1956), no. 1, 81–105.MathSciNetGoogle Scholar
  18. [18]
    K. Dykema, A. Skripka, Higher order spectral shift, J. Funct. Anal. 257 (2009), 1092–1132.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    K. Dykema, A. Skripka, Perturbation formulas for traces on normed ideals, Comm. Math. Phys. 325 (2014), no 3, 1107–1138.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Y.B. Farforovskaya, An estimate of the nearness of the spectral decompositions of self-adjoint operators in the Kantorovič–Rubinštein metric, Vestnik Leningrad Univ. 22 (1967), no. 19, 155–156.MathSciNetGoogle Scholar
  21. [21]
    Y.B. Farforovskaya, The connection of the Kantorovič–Rubinštein metric for spectral resolutions of self-adjoint operators with functions of operators, Vestnik Leningrad Univ. 23 (1968), no. 19, 94–97.MathSciNetGoogle Scholar
  22. [22]
    Y.B. Farforovskaya, An example of a Lipschitz function of self-adjoint operators with non-nuclear difference under a nuclear perturbation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 146–153.zbMATHGoogle Scholar
  23. [23]
    F. Gesztesy, A. Pushnitski, B. Simon, On the Koplienko spectral shift function, I. Basics, Zh. Mat. Fiz. Anal. Geom. 4 (2008), no. 1, 63–107.zbMATHMathSciNetGoogle Scholar
  24. [24]
    E. Kissin, D. Potapov, V. Shulman, F. Sukochev, Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, Proc. London Math. Soc. 105 (2012), no. 4, 661–702.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    L.S. Koplienko, Local conditions for the existence of the function of spectral shift. Investigations on linear operators and the theory of functions, VIII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 73 (1977), 102–117 (Russian). Translation: J. Soviet Math. 34 (1986), no. 6, 2080–2090.Google Scholar
  26. [26]
    L.S. Koplienko, Trace formula for perturbations of nonnuclear type, Sibirsk. Mat. Zh. 25 (1984), 62–71 (Russian). Translation: Siberian Math. J. 25 (1984), 735–743.Google Scholar
  27. [27]
    M.G. Krein, On a trace formula in perturbation theory, Matem. Sbornik 33 (1953), 597–626 (Russian).MathSciNetGoogle Scholar
  28. [28]
    M.G. Krein, On the perturbation determinant and the trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268–271 (Russian). Translation: Soviet Math. Dokl. 3 (1962), 707–710.Google Scholar
  29. [29]
    M.G. Krein, Some new studies in the theory of perturbations of self-adjoint operators, First Math. Summer School, Part I, 1964, pp. 103–187, Izdat. “Naukova Dumka”, Kiev (Russian). Translation: Topics in differential and integral equations and operator theory, Birkhäuser Verlag, Basel, 1983, pp. 107–172.Google Scholar
  30. [30]
    M.G. Krein, Perturbation determinants and a trace formula for some classes of pairs of operators, J. Operator Theory 17 (1987), no. 1, 129–187 (Russian).MathSciNetGoogle Scholar
  31. [31]
    H. Langer, Eine Erweiterung der Spurformel der Störungstheorie, Math. Nachr. 30, 123–135 (1965) (German).Google Scholar
  32. [32]
    I.M. Lifshits, On a problem of the theory of perturbations connected with quantum statistics, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 1 (47), 171–180 (Russian).Google Scholar
  33. [33]
    S. Lord, F. Sukochev, D. Zanin, Singular Traces, de Gruyter Studies in Mathematics, 46, Walter de Gruyter & Co., Berlin, 2012.Google Scholar
  34. [34]
    K.A. Makarov, A. Skripka, M. Zinchenko, On perturbation determinant for antidissipative operators, preprint.Google Scholar
  35. [35]
    H. Neidhardt, Scattering matrix and spectral shift of the nuclear dissipative scattering theory. Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), 237–250, Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987.Google Scholar
  36. [36]
    H. Neidhardt, Scattering matrix and spectral shift of the nuclear dissipative scattering theory. II. J. Operator Theory 19 (1988), no. 1, 43–62.Google Scholar
  37. [37]
    H. Neidhardt, Spectral shift function and Hilbert–Schmidt perturbation: extensions of some work of L.S. Koplienko, Math. Nachr. 138 (1988), 7–25.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    V.V. Peller, Hankel operators in the perturbation theory of unbounded self-adjoint operators. Analysis and partial differential equations, Lecture Notes in Pure and Applied Mathematics, 122, Dekker, New York, 1990, pp. 529–544.Google Scholar
  39. [39]
    V.V. Peller, An extension of the Koplienko–Neidhardt trace formulae, J. Funct.Anal. 221 (2005), 456–481.Google Scholar
  40. [40]
    V.V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 223 (2006), 515–544.CrossRefMathSciNetGoogle Scholar
  41. [41]
    V.V. Peller, The behavior of functions of operators under perturbations. A glimpse at Hilbert space operators, 287–324, Oper. Theory Adv. Appl., 207, Birkhäuser Verlag, Basel, 2010.Google Scholar
  42. [42]
    G. Pisier, Q. Xu, Noncommutative L p -spaces. Handbook of the Geometry of Banach spaces, 2, North-Holland, Amsterdam, 2003, pp. 1459–1517.Google Scholar
  43. [43]
    D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order, Invent. Math., 193 (2013), no. 3, 501–538.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    D. Potapov, A. Skripka, F. Sukochev, On Hilbert–Schmidt compatibility, Oper. Matrices, 7 (2013), no. 1, 1–34.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    D. Potapov, A. Skripka, F. Sukochev, Higher order spectral shift for contractions, Proc. London Math. Soc. 108 (2014), no 3, 327–349.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    D. Potapov, F. Sukochev, Operator-Lipschitz functions in Schatten–von Neumann classes, Acta Math., 207 (2011), 375–389.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    D. Potapov, F. Sukochev, Koplienko spectral shift function on the unit circle, Comm. Math. Phys., 309 (2012), 693–702.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    D. Potapov, F. Sukochev, D. Zanin, Krein’s trace theorem revisited, J. Spectral Theory, in press.Google Scholar
  49. [49]
    A.V. Rybkin, The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances, Mat. Sb. (N.S.) 125(167) (1984), no. 3, 420–430 (Russian).Google Scholar
  50. [50]
    A.V. Rybkin, The spectral shift function, the characteristic function of a contraction and a generalized integral, Mat. Sb. 185 (1994), no. 10, 91–144 (Russian). Translation: Russian Acad. Sci. Sb. Math. 83 (1995), no. 1, 237–281.Google Scholar
  51. [51]
    A.V. Rybkin, On A-integrability of the spectral shift function of unitary operators arising in the Lax–Phillips scattering theory, Duke Math. J. 83 (1996), no. 3, 683–699.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    B. Simon, Trace ideals and their applications. Second edition. Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence, RI, 2005.Google Scholar
  53. [53]
    A. Skripka, Trace inequalities and spectral shift, Oper. Matrices 3 (2009), no. 2, 241–260.CrossRefMathSciNetGoogle Scholar
  54. [54]
    A. Skripka, Higher order spectral shift, II. Unbounded case, Indiana Univ. Math. J. 59 (2010), no. 2, 691–706.CrossRefzbMATHMathSciNetGoogle Scholar
  55. [55]
    A. Skripka, Multiple operator integrals and spectral shift, Illinois J. Math., 55 (2011), no. 1, 305–324.zbMATHMathSciNetGoogle Scholar
  56. [56]
    A. Skripka, Asymptotic expansions for trace functionals, J. Funct. Anal. 266 (2014), no 5, 2845–2866.CrossRefMathSciNetGoogle Scholar
  57. [57]
    B. Sz.-Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space. Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London, 1970.Google Scholar
  58. [58]
    W.D. van Suijlekom, Perturbations and operator trace functions, J. Funct. Anal. 260 (2011), no. 8, 2483–2496.CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    D.R. Yafaev, Mathematical scattering theory: general theory, Providence, R.I., AMS, 1992.zbMATHGoogle Scholar
  60. [60]
    D.R. Yafaev, The Schrödinger operator: perturbation determinants, the spectral shift function, trace identities, and more, Funktsional. Anal. i Prilozhen. 41 (2007), no. 3, 60–83 (Russian). Translation: Funct. Anal. Appl. 41 (2007), no. 3, 217–236.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations