Multipliers and Lp-operator Semigroups

  • Werner J. RickerEmail author
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 240)


Deciding whether the generator of certain semigroups of operators in \( \mathit{L^p} \)(R) are unbounded scalar-type spectral operators can be reduced to deciding when \( {e^{i\varphi }} \), for specific unbounded functions \( \varphi :\mathbb{R} \to \mathbb{R} \), is a p-multiplier. We illustrate how van der Corput’s lemma is an effective technique in this regard.


Operator semigroup p-multiplier van der Corput lemma volume doubling Hardy–Littlewood maximal operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dunford N. and Schwartz J.T., Linear Operators III: Spectral Operators, Wiley- Interscience, New York, 1971.Google Scholar
  2. [2]
    Hörmander L., Estimates for translation invariant operators in L p spaces. Acta Math. 104 (1960), 93–140.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Ricker W.J., Non-spectrality of generators of some classical analytic semigroups. Indag. Math. (New Ser.) 1 (1990), 95–103.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Series No. 30, Princeton University Press, Princeton, 1970.Google Scholar
  5. [5]
    Wainger S., Averages and singular integrals over lower dimensional sets. Ann. Math. Studies 112 (1986), 357–421.MathSciNetGoogle Scholar
  6. [6]
    Zygmund A., Trigonometric Series I (2nd ed.), Cambridge University Press, Cambridge, 1988.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Math.-Geogr. FakultätKatholische Universität Eichstätt-IngolstadtEichstättGermany

Personalised recommendations