Skip to main content

Summary and Outlook

  • Chapter
  • First Online:
Accurate Calibration of Raman Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 781 Accesses

Abstract

Every future calibration effort is thus reduced to the measurement of the Raman system’s spectral sensitivity, which revealed itself as a rather fast and uncomplicated procedure. The achieved calibration uncertainty 2–\(3\,\%\) is well within the aforementioned uncertainty budget. This is an important finding for KATRIN’s aim to measure the neutrino mass at design sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babutzka M, Bahr M, Bonn J, Bornschein B, Dieter A, Drexlin G, Eitel K, Fischer S, Glück F, Grohmann S, Hötzel M, James TM, Käfer W, Leber M, Monreal B, Priester F, Röllig M, Schlösser M, Schmitt U, Sharipov F, Steidl M, Sturm M, Telle HH, Titov N (2012) Monitoring of the operating parameters of the katrin windowless gaseous tritium source. New J Phys 14(10):103046

    Google Scholar 

  2. Brunst T (2013) Durchführung von Messungen mit einem Lumineszenzstandard zur Kalibrierung des Laser-Raman-Systems für KATRIN. Bachelor thesis in preparation, Karlsruhe Institute of Technology

    Google Scholar 

  3. Demange D et al (2012) Overview of r&d at tlk for process and analytical issues on tritium management in breeder blankets of iter and demo. Fusion Eng Des 87(7–8):1206–1213

    Article  Google Scholar 

  4. Doss N (2007) Calculated final state probability distributions for \(\rm {T_2}\) \(\upbeta \)-decay measurements. Phd thesis, University of London

    Google Scholar 

  5. James TM, Schlösser M, Fischer S, Sturm M, Bornschein B, Lewis RJ, Telle HH (2013) Accurate depolarization ratio measurements for all diatomic hydrogen isotopologues. J Raman Spectrosc 44(6):857–865. doi:10.1002/jrs.4283

  6. James TM, Schlösser M, Lewis RJ, Fischer S, Bornschein B, Telle HH (2013) Automated quantitative spectroscopic analysis combining cosmic-rayremoval, background subtraction and peak fitting. Appl Spectrosc 67(8):204A–220A, 813–996, 949–959(11)

    Google Scholar 

  7. LeRoy RJ (2011) Recalculation of Raman transition matrix elements of all hydrogen isotopologues for 532nm laser excitation. Private commun

    Google Scholar 

  8. Ohta T, Bouchigny S, Didelez J-P, Fujiwara M, Fukuda K, Kohri H, Kunimatsu T, Morisaki C, Ono S, Rouillé G, Tanaka M, Ueda K, Uraki M, Utsuro M, Wang SY, Yosoi M (2011) Hd gas analysis with gas chromatography and quadrupole mass spectrometer. Nucl Instrum Meth A 640(1):241–246

    Article  ADS  Google Scholar 

  9. Ohta T, Bouchigny S, Didelez J-P, Fujiwara M, Fukuda K, Kohri H, Kunimatsu T, Morisaki C, Ono S, Rouillé G, Tanaka M, Ueda K, Uraki M, Utsuro M, Wang SY, Yosoi M (2012) Distillation of hydrogen isotopes for polarized hd targets. Nucl Instrum Meth A 664(1):347–352

    Article  ADS  Google Scholar 

  10. Rupp S (2012) Proof of concept of a calibration method for the laser Raman system for KATRIN based on the determination of the system’s spectral sensitivity. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  11. Rupp S (2016) In preparation. Phd thesis, Karlsruhe Institute of Technology

    Google Scholar 

  12. Röllig M (2013) In preparation. Phd thesis, Karlsruhe Institute of Technology

    Google Scholar 

  13. Schlösser M, Fischer S, Sturm M, Bornschein B, Lewis RJ, Telle HH (2011) Design implications for laser raman measurement systems for tritium sample-analysis, accountancy or process-control applications. Fusion Sci Technol 60(3):976–981

    Google Scholar 

  14. Schlösser M, Fischer S, Hötzel M, Käfer W (2012) Accuracy of the Laser Raman system for KATRIN. In: Bellini G (ed) Proceedings of the International School of Physics “Enrico Fermi”, Course CLXXXII “Neutrino Physics and Astrophysics”, pp 333–336

    Google Scholar 

  15. Schlösser M, Seitz H, Rupp S, Herwig P, Alecu CG, Sturm M, Bornschein B (2013) In-line calibration of raman systems for analysis of gas mixtures of hydrogen isotopologues with sub-percent accuracy. Anal Chem 85(5):2739–2745

    Article  Google Scholar 

  16. Schlösser M, James TM, Fischer S, Lewis RJ, Bornschein B, Telle HH (2013) Evaluation method for raman depolarization measurements including geometrical effects and polarization aberrations. J Raman Spectrosc 44(3):453–462

    Article  ADS  Google Scholar 

  17. Schlösser M, Rupp S, Seitz H, Fischer S, Bornschein B, James TM, Telle HH (2013) Accurate calibration of the laser Raman system for the Karlsruhe Tritium Neutrino Experiment. J Mol Structr 1044:61–66. doi:10.1016/j.molstruc.2012.11.022

  18. Shu W (ITER org.) Raman Spectroscopy for the ITER Tritium Plant Analytical System. Private commun

    Google Scholar 

  19. Souers PC (1986) Hydrogen properties for fusion energy. Univ of California Pr

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Schlösser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlösser, M. (2014). Summary and Outlook. In: Accurate Calibration of Raman Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06221-1_8

Download citation

Publish with us

Policies and ethics