Skip to main content

Introduction

  • Chapter
  • First Online:
Accurate Calibration of Raman Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 792 Accesses

Abstract

The work in hand is focused thematically on the accurate calibration of a Raman system at the Karlsruhe Tritium Neutrino Experiment (KATRIN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(Z\) and \(A\) are atomic number (number of protons) and mass number (number of nucleons), respectively.

  2. 2.

    The “standard” neutrinos are dubbed Dirac neutrinos.

  3. 3.

    Note that this matrix is similar to the unitarian Cabbibo-Kobayashi-Maskawa (CKM) matrix in the quark sector [60].

  4. 4.

    LNGS is the Gran Sasso Underground Laboratory in Italy.

  5. 5.

    There are also no left-handed \(\bar{\nu }_{L}\) single states for anti-neutrino.

  6. 6.

    The Hermitian conjugate is abbreviated by \(h.c.\)

  7. 7.

    Originally proposed by M. Goeppert-Mayer in 1935 [45].

  8. 8.

    Originally suggested by H. W Furry in 1939 [37].

  9. 9.

    The helicity is defined as the projection of the spin \(\varvec{s}\) onto the momentum direction \(\mathbf{{p}}\): \(H=(\mathbf{{s}}\cdot \mathbf{{p}})/(|\mathbf{{s}}|\cdot |\mathbf{{p}}|)\).

  10. 10.

    This term denotes in principle that a massive neutrino has two helicity components.

  11. 11.

    In specific cases even a black hole is formed.

  12. 12.

    MARE \(=\) Microcalorimeter Arrays for a Rhenium Experiment.

References

  1. Agarwal S, Feldman HA (2011) The effect of massive neutrinos on the matter power spectrum. Mon Not R Astron Soc 410(3):1647–1654

    ADS  Google Scholar 

  2. Aihara H, Allende Prieto C, An D et al (2011) The eighth data release of the sloan digital sky survey: first data from SDSS-III. Astrophys. J Suppl S 193(2):29

    Google Scholar 

  3. ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak, Heavy Flavour Groups (2006) Precision electroweak measurements on the Z resonance. Phys Rep 427(5–6):257–454

    Google Scholar 

  4. Alekseev EN, Alekseeva LN, Volchenko VI, Krivosheina IV (1987) Possible detection of a neutrino signal on 23 february 1987 at the baksan underground scintillation telescope of the institute of nuclear research. JETP Lett 45:589–592

    ADS  Google Scholar 

  5. Arkani-Hamed N, Dimopoulos S, Dvali G, March-Russell J (2001) Neutrino masses from large extra dimensions. Phys Rev D 65:024032

    Article  ADS  MathSciNet  Google Scholar 

  6. Arnaboldi C, Brofferio C, Cremonesi O, Fiorini E, Lo Bianco C, Martensson L, Nucciotti A, Pavan M, Pessina G, Pirro S, Previtali E, Sisti M, Giuliani A, Margesin B, Zen M (2003) Bolometric bounds on the antineutrino mass. Phys Rev Lett 91:161802

    Article  ADS  Google Scholar 

  7. Aseev VN, Belesev AI, Berlev AI, Geraskin EV, Golubev AA, Likhovid NA, Lobashev VM, Nozik AA, Pantuev VS, Parfenov VI, Skasyrskaya AK, Tkachov FV, Zadorozhny SV (2011) Upper limit on the electron antineutrino mass from the troitsk experiment. Phys Rev D 84:112003

    Article  ADS  Google Scholar 

  8. ALTAS Collaboration (2012) Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys Lett B 716(1):1–29

    Google Scholar 

  9. Babutzka M, Bahr M, Bonn J, Bornschein B, Dieter A, Drexlin G, Eitel K, Fischer S, Glück F, Grohmann S, Hötzel M, James TM, Käfer W, Leber M, Monreal B, Priester F, Röllig M, Schlösser M, Schmitt U, Sharipov F, Steidl M, Sturm M, Telle HH, Titov N (2012) Monitoring of the operating parameters of the katrin windowless gaseous tritium source. New J Phys 14(10):103046

    Article  Google Scholar 

  10. Bahcall JN, Serenelli AM, Basu S (2005) New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys J Lett 621(1):L85

    Article  ADS  Google Scholar 

  11. Bahcall JN (1964) Solar neutrinos. i theoretical. Phys Rev Lett 12:300–302

    Article  ADS  Google Scholar 

  12. Bergström L, Goobar A (2006) Cosmology and particle astrophysics. Springer, Berlin

    Google Scholar 

  13. Booth NE, Cabrera B, Fiorini E (1996) Low-temperature particle detectors. Annu Rev Nucl Part S 46(1):471–532

    Article  ADS  Google Scholar 

  14. Burck A, Kempf S, Schäfer S, Rotzinger H, Rodrigues M, Wolf T, Gastaldo L, Fleischmann A, Enss C (2008) Microstructured magnetic calorimeter with meander-shaped pickup coil. J Low Temp Phys 151:337–344

    Google Scholar 

  15. Burenin RA (2013) Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations. arXiv:1301.4791

  16. Cleveland BT, Daily T, Davis R, Distel JR, Lande K, Lee CK, Wildenhain PS, Ullman J (1998) Measurement of the solar electron neutrino flux with the homestake chlorine detector. Astrophys J 496(1):505

    Article  ADS  Google Scholar 

  17. Collaboration CMS (2012) Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Phys Lett B 716(1):30–61

    Article  ADS  Google Scholar 

  18. Cowan CL, Reines F, Harrison FB, Kruse HW, McGuire AD (1956) Detection of the free neutrino: a confirmation. Science 124(3212):103–104

    Article  ADS  Google Scholar 

  19. CUORE Collaboration (2005) CUORE: a cryogenic underground observatory for rare events. arXiv:hep-ex/0501010

    Google Scholar 

  20. Curran SC, Angus J, Cockroft AL (1949) The beta-spectrum of tritium [10]. Phys Rev 76(6):853–854

    Article  ADS  Google Scholar 

  21. Danby G, Gaillard J-M, Goulianos K, Lederman M, Mistry N, Schwartz M, Steinberger J (1962) Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys Rev Lett 9:36–44

    Article  ADS  Google Scholar 

  22. Davis R (1964) Solar neutrinos. ii. experimental. Phys Rev Lett 12:303–305

    Article  ADS  Google Scholar 

  23. Davis R, Harmer DS, Hoffman KC (1968) Search for neutrinos from the sun. Phys Rev Lett 20:1205–1209

    Article  ADS  Google Scholar 

  24. Phys Rev Lett (2012) Observation of electron-antineutrino disappearance at daya bay. 108:171803

    Google Scholar 

  25. Doi M, Kotani T, Takasugi E (1985) Double beta decay and majorana neutrino. Prog Theor Phys Supp 83:1–175

    Google Scholar 

  26. Dolgov AD (2002) Neutrinos in cosmology. Phys Rep 370(4–5):333–535

    Google Scholar 

  27. DONUT Collaboration (2001) Observation of tau neutrino interactions. Phys Lett B 504(3):218–224

    Google Scholar 

  28. Phys Rev D (2012) Reactor \(\overline{\nu }_{e}\) disappearance in the double chooz experiment. 86:052008

    Google Scholar 

  29. Drexlin G, Hannen V, Mertens S, Weinheimer C (2013) Current direct neutrino mass experiments. Adv High En Phys 293986:2013

    Google Scholar 

  30. EDELWEISS Collaboration (2012) Search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors. Phys Rev D 86:051701

    Google Scholar 

  31. Elliott SR, Vogel P (2002) Double beta decay. Annu Rev Nucl Part S 52(1):115–151

    Article  ADS  Google Scholar 

  32. Collaboratio EXO (2012) The exo-200 detector, part i: detector design and construction. J Instrum 7(05):P05010

    Google Scholar 

  33. Collaboration EXO (2012) Search for neutrinoless double-beta decay in \(^{136}_{\rm {Xe}}\) with EXO-200. Phys Rev Lett 109:032505

    Google Scholar 

  34. Fermi E (1934) Versuch einer Theorie der \(\upbeta \)-Strahlen. Z Phys 88:161–177

    Google Scholar 

  35. Firestone RB, Chu SYF, Baglin CM (1999) Table of Isotopes, 8th Edn. Wiley, New York

    Google Scholar 

  36. Fischer T, Whitehouse SC, Mezzacappa A, Thielemann F-K, Liebendörfers M (2010) Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron Astrophys 517:A80

    Article  ADS  Google Scholar 

  37. Furry WH (1939) On transition probabilities in double beta-disintegration. Phys Rev 56:1184–1193

    Article  ADS  MATH  Google Scholar 

  38. Galeazzi M, Gatti F, Lusignoli M, Nucciotti A, Ragazzi S, Ribeiro Gomes M(2012) The electron capture decay of 163-Ho to measure the electron neutrino mass with sub-eV accuracy (and Beyond). arXiv:1202.4763

  39. GALLEX Collaboration (1999) GALLEX solar neutrino observations: results for GALLEX IV. Phys Lett B 447(1–2):127–133

    Google Scholar 

  40. Gatti F (2001) Microcalorimeter measurements. Nucl Phys B-Proc Sup 91(1–3):293–296

    Article  ADS  Google Scholar 

  41. Gatti F, Fontanelli F, Galeazzi M, Swift AM, Vitale S (1999) Detection of environmental fine structure in the low-energy \(\upbeta \)-decay spectrum of \(^{187}\rm {re}\). Nature 397(6715):137–139

    Google Scholar 

  42. Geiser A (2003) Experimental results on neutrino oscillations. In: Winter K, Altarelli G (eds) Neutrino mass, vol 190., Springer tracts in modern physicsSpringer, Berlin, pp 75–134

    Chapter  Google Scholar 

  43. GERDA Collaboration (2004) A new \(^{76}\rm {Ge}\) double beta decay experiment at LNGS. arXiv:hep-ex/0404039

    Google Scholar 

  44. Collaboration GNO (2005) Complete results for five years of gno solar neutrino observations. Phys Lett B 616(3–4):174–190

    ADS  Google Scholar 

  45. Goeppert-Mayer M (1935) Double beta-disintegration. Phys Rev 48:512–516

    Article  ADS  MATH  Google Scholar 

  46. Gribov V, Pontecorvo B (1969) Neutrino astronomy and lepton charge. Phys Lett B 28(7):493–496

    Article  ADS  Google Scholar 

  47. Hannestad Steen (2010) Neutrino physics from precision cosmology. Prog Part Nucl Phys 65(2):185–208

    Article  ADS  Google Scholar 

  48. Hess VF (1912) Ăśber beobachtungen der durchdringenden strahlung bei sieben freiballonfahrten. Z Phys 13:1084

    Google Scholar 

  49. Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509

    Article  ADS  MathSciNet  Google Scholar 

  50. Collaboration IMB (1987) Observation of a neutrino burst in coincidence with supernova 1987a in the large magellanic cloud. Phys Rev Lett 58:1494–1496

    Article  Google Scholar 

  51. Janka H-Th, Langanke K, Marek A, Martínez-Pinedo G, Müller B (2007) Theory of core-collapse supernovae. Phys Rep 442(1–6):38–74

    Article  ADS  Google Scholar 

  52. K2K Collaboration (2006) Measurement of neutrino oscillation by the K2K experiment. Phys Rev D, 74:07200

    Google Scholar 

  53. Collaboration KamLAND-Zen (2013) Limit on neutrinoless \(\upbeta \upbeta \) decay of \(^{136}_{\rm {Xe}}\) from the first phase of KamLAND-Zen and comparison with the positive claim in \(^{76}_{\rm {Ge}}\). Phys Rev Lett 110:062502

    Google Scholar 

  54. Collaboration Kamiokande (1987) Observation of a neutrino burst from the supernova sn1987a. Phys Rev Lett 58:1490–1493

    Article  Google Scholar 

  55. Collaboration Kamiokande (1996) Solar neutrino data covering solar cycle 22. Phys Rev Lett 77:1683–1686

    Article  Google Scholar 

  56. KATRIN Collaboration (2005) KATRIN design report 2004. FZK—FZKA 7090

    Google Scholar 

  57. Kayser B (2012) Neutrino oscillation physics. In: Bellini G (ed) Proceedings of the International School of Physics Enrico Fermi, Course CLXXXII Neutrino Physics and Astrophysics, pp 1–14

    Google Scholar 

  58. Kibble TWB (1967) Symmetry breaking in non-abelian gauge theories. Phys Rev 155:1554–1561

    Article  ADS  Google Scholar 

  59. Klapdor-Kleingrothaus HV, Krivosheina IV (2006) The evidence for the observation of \(0\nu \upbeta \upbeta \) decay: The identification of \(0\nu \upbeta \upbeta \) events from the full spectra. Mod Phys Lett A 21(20):1547–1566

    Google Scholar 

  60. Kobayashi M, Maskawa T (1973) \(cp\)-violation in the renormalizable theory of weak interaction. Prog Theor Phys 49(2):652–657

    Article  ADS  Google Scholar 

  61. Komatsu E, Smith KM, Dunkley J et al (2011) Seven-year wilkinson microwave anisotropy probe (wmap) observations: cosmological interpretation. Astrophys J Suppl 192(2):18

    Article  ADS  Google Scholar 

  62. Kraus C, Bornschein B, Bornschein L, Bonn J, Flatt B, Kovalik A, Ostrick B, Otten EW, Schall JP, Thümmler T, Weinheimer C (2005) Final results from phase ii of the mainz neutrino mass searchin tritium decay. Eur Phys J C 40(4):447–468

    Article  ADS  Google Scholar 

  63. Lazarides G, Shafi Q, Wetterich C (1981) Proton lifetime and fermion masses in an so(10) model. Nucl Phys B 181(2):287–300

    Article  ADS  Google Scholar 

  64. Lesgourgues J, Pastor S (2012) Neutrino mass from cosmology. Adv High En Phys 2012(2):608515

    Google Scholar 

  65. Lobashev VM, Spivak PE (1985) A method for measuring the electron antineutrino rest mass. Nucl Instrum Meth A 240(2):305–310

    Article  ADS  Google Scholar 

  66. Loredo TJ, Lamb DQ (2002) Bayesian analysis of neutrinos observed from supernova sn 1987a. Phys Rev D 65:063002

    Article  ADS  Google Scholar 

  67. Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stan 105(4):541–549

    Article  Google Scholar 

  68. MACRO Collaboration (2001) Matter effects in upward-going muons and sterile neutrino oscillations. Phys Lett B 517(1–2):59–66

    Google Scholar 

  69. MAJORANA Collaboration (2012) The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay. J Phys Conf Ser 381(1):012044

    Google Scholar 

  70. Maki Z, Nakagawa M, Sakata S (1962) Remarks on the unified model of elementary particles. Prog Theor Phys 28(5):870–880

    Article  ADS  MATH  Google Scholar 

  71. Collaboration MARE (2012) Mare-1 in milan: status and perspectives. J Low Temp Phys 167:1035–1040

    Article  Google Scholar 

  72. MINOS Collaboration (2011) Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys Rev Lett 106:181801

    Google Scholar 

  73. Mohapatra RN, Nasri S, Yu H-B (2006) Grand unification of symmetry. Phys Lett B 636(2):114–118

    Article  ADS  Google Scholar 

  74. Mohapatra RN et al (2007) Theory of neutrinos: a white paper. Rep Prog Phys 70(11):1757

    Article  ADS  Google Scholar 

  75. Mohapatra RN, Senjanović G (1980) Neutrino mass and spontaneous parity nonconservation. Phys Rev Lett 44:912–915

    Article  ADS  Google Scholar 

  76. Nagy SZ, Fritioff T, Björkhage M, Bergström I, Schuch R (2006) On the Q -value of the tritium ß-decay. Europhys Lett 74(3):404

    Google Scholar 

  77. Nucciotti A (2008) The mare project. J Low Temp Phys 151:597–602

    Article  ADS  Google Scholar 

  78. Otten EW, Weinheimer C (2008) Neutrino mass limit from tritium Ăź decay. Rep Prog Phys 71(8):086201

    Article  ADS  Google Scholar 

  79. Pauli W, Hermann A, Meyenn KV, Weisskopf VF (1985) 1930–1939, Wolfgang pauli - wissenschaftlicher briefwechsel mit Bohr, Einstein, Heisenberg, u.a. Springer, berlin

    Google Scholar 

  80. Phys Rev D (2012) 2012 review of particle physics. 86:010001

    Google Scholar 

  81. Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 mc/s. Astrophys J 142:419–421

    Article  ADS  Google Scholar 

  82. Picard A, Backe H, Barth H, Bonn J, Degen B, Edling Th, Haid R, Hermanni A, Leiderer P, Loeken Th, Molz A, Moore RB, Osipowicz A, Otten EW, Przyrembel M, Schrader M, Steininger M, Weinheimer Ch (1992) A solenoid retarding spectrometer with high resolution and transmission for kev electrons. Nucl Instrum Meth B 63(3):345–358

    Article  ADS  Google Scholar 

  83. Collaboration Planck (2010) Planck pre-launch status: the planck mission. Astron Astrophys 520(A1):1–22

    Google Scholar 

  84. Collaboration Planck (2013) Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076

  85. Povh B, Rith K, Scholz C, Zetsche F (2004) Teilchen und kerne: eine EinfĂĽhrung in die physikalischen konzepte (Springer-Lehrbuch) (German Edition). Springer, Berlin

    Google Scholar 

  86. Pontecorvo B (1968) Neutrino experiments and the problem of conservation of leptonic charge. Sov J Exp Theo Phy 26:984

    ADS  Google Scholar 

  87. Project 8 Collaboration (2012) Measuring neutrino masses using radio-frequency techniques. J Phys Conf Ser 375(4):042005

    Google Scholar 

  88. Raffelt GG, (2012) Neutrinos and the stars. In: Bellini G (ed) Proceedings of the International School of Physics Enrico Fermi, Course CLXXXII Neutrino Physics and Astrophysics, pp 61–144

    Google Scholar 

  89. Ranitzsch PC-O, Porst J-P, Kempf S, Pies C, Schäfer S, Hengstler D, Fleischmann A, Enss C, Gastaldo L (2012) Development of metallic magnetic calorimeters for high precision measurements of calorimetric \(\rm {^{187}re}\) and \(\rm {^{163}ho}\) spectra. J Low Temp Phys 167:1004–1014

    Article  ADS  Google Scholar 

  90. Collaboration RENO (2012) Observation of reactor electron antineutrinos disappearance in the reno experiment. Phys Rev Lett 108:191802

    Article  Google Scholar 

  91. Rodejohann W (2011) Neutrino-less double beta decay and particle physics. Int J Mod Phys E 20(09):1833–1930

    Article  ADS  Google Scholar 

  92. Collaboration SAGE (2002) Solar neutrino flux measurements by the soviet-american gallium experiment (sage) for half the 22-year solar cycle. J Exp Theo Phys 95:181–193

    Article  ADS  Google Scholar 

  93. Sánchez AG, Scóccola CG, Ross AJ et al (2012) The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: cosmological implications of the large-scale two-point correlation function. Mon Not R Astron Soc 425(1):415–437

    Article  ADS  Google Scholar 

  94. Schechter J, Valle JWF (1980) Neutrino masses in su(2) \(\bigotimes \) u(1) theories. Phys Rev D 22:2227–2235

    Article  ADS  Google Scholar 

  95. Schmüser P (1995) Feynman—Graphen und eichtheorien Für experimentalphysiker. Springer, Berlin

    Google Scholar 

  96. Schmitz N (1997) Neutrinophysik. Teubner StudienbĂĽcher Physik. Springer Vieweg Verlag, p 478 (in German). ISBN-10: 3519032368, ISBN-13: 978-3519032366

    Google Scholar 

  97. Kayser B (2012) High energy neutrinos and cosmic rays. In: Bellini G (ed) Proceedings of the International School of Physics Enrico Fermi, Course CLXXXII Neutrino Physics and Astrophysics, pp 145–184

    Google Scholar 

  98. Sisti M, Arnaboldi C, Brofferio C et al (2004) New limits from the milano neutrino mass experiment with thermal microcalorimeters. Nucl Instrum Meth A 520(1–3):125–131

    Article  ADS  Google Scholar 

  99. Smirnov AY (2006) Neutrino mass and new physics. J Phys Conf Ser 53(1):44

    Article  ADS  Google Scholar 

  100. Collaboration SNO (2001) Measurement of the rate of \(\nu _e+\mathit{d}\rightarrow \mathit{p}+\mathit{p}+{\mathit{e}}^{-}\) interactions produced by \(^{8}b\) solar neutrinos at the sudbury neutrino observatory. Phys Rev Lett 87:071301

    Article  Google Scholar 

  101. Collaboration SNO (2008) Independent measurement of the total active \(^{8}_{\rm {B}}\) solar neutrino flux using an array of \(^{3}_{\rm {He}}\) proportional counters at the sudbury neutrino observatory. Phys Rev Lett 101:111301

    Google Scholar 

  102. SNO\(+\) Collaboration (2012) Neutrinoless double beta decay with SNO\(+\). J Phys Conf Ser 375(4):042015

    Google Scholar 

  103. Soudan 2 Collaboration (2003) Measurement of the \(L/E\) distributions of atmospheric \(\nu \) in Soudan 2 and their interpretation as neutrino oscillations. Phys Rev D 68:113004

    Google Scholar 

  104. Collaboration Super-Kamiokande (2005) Measurement of atmospheric neutrino oscillation parameters by super-kamiokande i. Phys Rev D 71:112005

    Article  Google Scholar 

  105. Collaboration Super-Kamiokande (1998) Measurements of the solar neutrino flux from super-kamiokande’s first 300 days. Phys Rev Lett 81:1158–1162

    Article  Google Scholar 

  106. Collaboration Super-Kamiokande (1998) Evidence for oscillation of atmospheric neutrinos. Phys Rev Lett 81:1562–1567

    Article  Google Scholar 

  107. T2K Collaboration (2011) Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. Phys Rev Lett 107:041801

    Google Scholar 

  108. Weinheimer C (2003) Laboratory limits on neutrino masses. In: Winter Klaus, Altarelli Guido (eds) Neutrino mass, vol 190., Springer tracts in modern physics, Springer, Berlin, pp 25–52

    Google Scholar 

  109. Weinheimer C (2013) Direct neutrino mass measurements. Hyperfine Interact 215(1–3): 85–93

    Google Scholar 

  110. Woosley S, Janka T (2005) The physics of core-collapse supernovae. Nat Phys 1:47–154

    Article  Google Scholar 

  111. Zuber K (2011) Neutrino Physics, 2nd Edn. Series in high energy physics, cosmology and gravitation. Taylor and Francis. ISBN-10:1420064711, ISBN-13: 978-1420064711

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Schlösser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlösser, M. (2014). Introduction. In: Accurate Calibration of Raman Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06221-1_1

Download citation

Publish with us

Policies and ethics