Skip to main content

Physiological Implications of Legume Nodules Associated with Soil Acidity

  • Chapter
Legume Nitrogen Fixation in a Changing Environment

Abstract

The mutualistic legume-rhizobia symbiosis that leads to nodule formation and ensuing nitrogen fixation is of great importance to soil health and agriculture sustainability. The processes of nodulation and nitrogen fixation can improve the nitrogenous content and overall structure of the rhizosphere; however, they are highly sensitive to environmental parameters, such as soil acidity. Indeed, low pH conditions can appreciably diminish the benefits associated with legumes and can decrease their biomass and yields. This is of considerable economic and agricultural importance as legume crop and pasture species are commonly grown on acidic soils. Acidic growing conditions can reduce the overall fitness of both the legume host and the rhizobia partner, in addition to directly hindering the establishment of nodule structures. This includes impairing the signal exchange between the two symbiotic partners and inhibiting their ability to express critical nodulation genes. The effect of soil acidity on legume and rhizobia growth is addressed here, with a focus on nodule development and function. Practices to help overcome limitations associated with growing legumes in low pH environments are addressed, with an emphasis on how current biotechnology and molecular genetic approaches could aid in overcoming the negative effects associated with low pH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarons S, Graham P (1991) Response of Rhizobium leguminosarum bv phaseoli to acidity. Plant Soil 134:145–151

    CAS  Google Scholar 

  • Alva AK, Edwards DG, Carroll BJ, Asher CJ, Gresshoff PM (1988) Nodulation and early growth of soybean mutants with increased nodulation capacity under acid soil infertility factors. Agron J 80:836–841

    Article  Google Scholar 

  • Andersson M (1988) Toxicity and tolerance of aluminium in vascular plants. Water Air Soil Pollut 39:439–462

    CAS  Google Scholar 

  • Appunu C, Dhar B (2006) Symbiotic effectiveness of acid tolerant Bradyrhizobium strains with soybean in low pH soil. Afr J Biotechnol 5:842–845

    CAS  Google Scholar 

  • Aranjuelo I, Aldasoro J, Arrese-Igor C, Erice G, Sanz-Sáez A (2015) How does high temperature affect legume nodule symbiotic activity? In: Sulieman S, Tran LS (eds) Legume nitrogen fixation in a changing environment – achievements and challenges. Springer, New York, 67–87

    Google Scholar 

  • Bhuvaneswari TV, Bhagwat AA, Bauer WD (1981) Transient susceptibility of root cells in four common legumes to nodulation by rhizobia. Plant Physiol 68:1144–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brockwell J, Pilka A, Holliday R (1991) Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales. Aust J Exp Agric 31:211–219

    Article  Google Scholar 

  • Caetano-Anollés G, Lagares A, Favelukes G (1989) Adsorption of Rhizobium meliloti to alfalfa roots: dependence on divalent cations and pH. Plant Soil 117:67–74

    Article  Google Scholar 

  • Calder F, MacLeod L, Bishop R, MacEachern C (1965) Effect of limestone on pasture sward renovation with and without cultivation. Can J Soil Sci 45:251–256

    Article  CAS  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985a) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci U S A 82:4162–4166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985b) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Correa OS, Barneix AJ (1997) Cellular mechanisms of pH tolerance in Rhizobium loti. World J Microbiol Biotechnol 13:153–157

    Article  CAS  Google Scholar 

  • Cunningham SD, Munns DN (1984) The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276

    Article  CAS  Google Scholar 

  • de Lucena DK, Pühler A, Weidner S (2010) The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiol 10:265

    Article  PubMed Central  PubMed  Google Scholar 

  • Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10:348–358

    Article  CAS  PubMed  Google Scholar 

  • Döbereiner J (1966) Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L.), in acid soils. Plant Soil 24:153–166

    Article  Google Scholar 

  • dos Reis FB, Simon MF Jr, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro MF, de Queiroz LP, Scotti MR, Chen WM, Nore A, Rubio MC, de Faria SM, Bontemps C, Goi SR, Young PW, Sprent JI, James EK (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946

    Article  PubMed  Google Scholar 

  • Eswaran H, Reich P, Beinroth F (1997) Global distribution of soils with acidity. In: Moniz AC, Furlani AMC, Schaffert RE, Fageria NK, Rosolem CA, Cantarella H (eds) Plant-soil interaction at low pH: sustainable agriculture and forestry production. Brazilian Soil Science Society, Campinas, Brazil, pp 159–164

    Google Scholar 

  • Evans J, Dear B, O’Connor G (1990) Influence of an acid soil on the herbage yield and nodulation of five annual pasture legumes. Aust J Exp Agric 30:55–60

    Article  CAS  Google Scholar 

  • Ferguson BJ (2013) The development and regulation of soybean nodules. In: Board JE (ed) A comprehensive survey of international soybean research – genetics, physiology, agronomy, and nitrogen relationships. InTech – Open Access, pp 31–47. http://dx.doi.org/10.5772/52573

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Lin MH, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8:e23426

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    Article  CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770–790

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Li D, Hastwell AH, Reid DE, Li Y, Jackson SA, Gresshoff PM (2014) The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK. Plant Biotechnol J, 12:1085–1097

    Google Scholar 

  • Glenn AR, Dilworth MJ (1994) The life of root nodule bacteria in the acidic underground. FEMS Microbiol Lett 123:1–9

    Article  CAS  Google Scholar 

  • González EM, Larrainzar E, Marino D, Wienkoop S, Gil-Quintana E, Arrese-Igor C (2015) Physiological responses of N2-fixing legumes to water limitation. In: Sulieman S, Tran LS (eds) Legume nitrogen fixation in a changing environment – achievements and challenges. Springer, New York, 5–33

    Google Scholar 

  • Graham P (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res 4:93–112

    Article  Google Scholar 

  • Graham P, Draeger K, Ferrey M, Conroy M, Hammer B, Martinez E, Aarons S, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR 1899. Can J Microbiol 40:198–207

    Article  CAS  Google Scholar 

  • Graham P, Viteri S, Mackie F, Vargas A, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res 5:121–128

    Article  Google Scholar 

  • Gresshoff PM, Delves AC (1986) Plant genetic approaches to symbiotic nodulation and nitrogen fixation in legumes. In: Blonstein AB, King PJ (eds) Plant gene research, vol 3. Springer, Vienna, pp 151–206

    Google Scholar 

  • Gresshoff PM, Hayashi S, Biswas B, Mirzaei S, Indrasumunar A, Reid D, Samuel S, van Hameren B, Hastwell A, Scott P, Ferguson BJ (2015) The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. J Plant Physiol 172:128–136

    Google Scholar 

  • Gresshoff PM, Lohar D, Chan PK, Biswas B, Jiang Q, Reid D, Ferguson B, Stacey G (2009) Genetic analysis of ethylene regulation of legume nodulation. Plant Signal Behav 4:818–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Microbiol 80:695–720

    CAS  Google Scholar 

  • Hastwell AH, Gresshoff PM, Ferguson BJ (2015) The structure and activity of nodulation-suppressing CLE peptide hormones of legumes. Functional Plant Biology, Goldacre Paper 42:229–238

    CAS  Google Scholar 

  • Hayashi S, Gresshoff PM, Ferguson BJ (2013) Systemic signalling in legume nodulation: nodule formation and its regulation. In: Baluska F (ed) Long-distance signalling and communication in plants. Springer, Heidelberg, Germany, pp 219–229

    Chapter  Google Scholar 

  • Hayashi S, Reid DE, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson B (2012) Transient Nod factor-dependent gene expression in the nodulation competent zone of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnol J 8:995–1010

    Article  Google Scholar 

  • Howieson JG, Robson AD, Ewing MA (1993) External phosphate and calcium concentrations, and pH, but not the products of rhizobial nodulation genes, affect the attachment of Rhizobium meliloti to roots of annual medics. Soil Biol Biochem 25:567–573

    Article  CAS  Google Scholar 

  • Hungria M, Stacey G (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem 29:819–830

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and feedstock in a bio-based economy – a review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Keyser HH, Munns DN (1979) Effects of calcium, manganese, and aluminum on growth of rhizobia in acid media. Soil Sci Soc Am J 43:500–503

    Article  CAS  Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminium species. Plant Soil 134:167–178

    CAS  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E, Gianoncelli A, Ferguson BJ, Blamey FPC, Menzies NW, Nicholson TM, McKenna BA, Wang P, Gresshoff PM, Kourousias G, Webb RI, Green K, Tollenaere A (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411

    Google Scholar 

  • Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SSM, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Piñeros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley RJ, Bilgin DD, Radwan O, Neece DJ, Clough SJ, May GD, Stacey G (2010) Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol 152:541–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lie T (1969) The effect of low pH on different phases of nodule formation in pea plants. Plant Soil 31:391–406

    Article  Google Scholar 

  • Lin MH, Gresshoff PM, Ferguson BJ (2012) Systemic regulation of soybean nodulation by acidic growth conditions. Plant Physiol 160:2028–2039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin YH, Ferguson BJ, Kereszt A, Gresshoff PM (2010) Suppression of hypernodulation in soybean by a leaf-extracted, NARK- and Nod factor dependent, low molecular mass fraction. New Phytol 185:1074–1086

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Lin MH, Gresshoff PM, Ferguson BJ (2011) An efficient petiole feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 6:36–45

    Article  CAS  PubMed  Google Scholar 

  • Lluch C, Cobos-Porras L (2015) Salinity: physiological impacts on legumes nitrogen fixation. In: Sulieman S, Tran LS (eds) Legume nitrogen fixation in a changing environment – achievements and challenges. Springer, New York, 35–65

    Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • McKay IA, Djordjevic MA (1993) Production and excretion of Nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl Environ Microbiol 59:3385–3392

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miransari M, Balakrishnan P, Smith D, Mackenzie A, Bahrami H, Malakouti M, Rejali F (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosacharides. Commun Soil Sci Plant Anal 37:1103–1110

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Riahi H, Eftekhar F, Minaie A, Smith DL (2013) Improving soybean (Glycine max L.) N2 fixation under stress. J Plant Growth Regul 32:909–921

    Article  CAS  Google Scholar 

  • Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signalling. Plant J 70:367–376

    Article  CAS  PubMed  Google Scholar 

  • Munns DN (1968) Nodulation of Medicago sativa in solution culture. Plant Soil 28:129–146

    Article  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Commun 4:2191

    Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olivares J, Bedmar EJ, Sanjuán J (2013) Biological nitrogen fixation in the context of global change. Mol Plant-Microbe Interact 26:486–494

    Article  CAS  PubMed  Google Scholar 

  • Penmetsa RV, Cook RD (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 257:527–530

    Article  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM (2011a) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reid DE, Ferguson BJ, Gresshoff PM (2011b) Inoculation and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe Interact 24:606–618

    Article  CAS  PubMed  Google Scholar 

  • Reid DE, Hayashi S, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway. Plant Biotechnol J 10:680–689

    Article  CAS  PubMed  Google Scholar 

  • Reid D, Li D, Ferguson BJ, Gresshoff PM (2013) Structure-function analysis of the GmRIC1 signal peptide and CLE domain required for nodulation control in soybean. J Exp Bot 64:1575–1585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ, Djordjevic MA, Rolfe BG (1988) Expression of nodulation genes in Rhizobium leguminosarum biovar trifolii is affected by low pH and by Ca and Al ions. Appl Environ Microbiol 54:2541–2548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rojas-Jiménez K, Sohlenkamp C, Geiger O, Martínez-Romero E, Werner D, Vinuesa P (2005) A ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol Plant-Microbe Interact 18:1175–1185

    Article  PubMed  Google Scholar 

  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson S (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    Article  PubMed  Google Scholar 

  • Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  CAS  PubMed  Google Scholar 

  • Taylor RW, Williams ML, Sistani KR (1991) N2 fixation by soybean-Bradyrhizobium combinations under acidity, low P and high Al stresses. Plant Soil 131:293–300

    Article  CAS  Google Scholar 

  • Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR (1996) Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology 142:1693–1704

    Article  CAS  PubMed  Google Scholar 

  • Turgeon BG, Bauer WD (1982) Early events in the infection of soybean by Rhizobium japonicum. Time course and cytology of the initial infection process. Can J Bot 60:152–161

    Article  Google Scholar 

  • van Hameren B, Hayashi S, Gresshoff PM, Ferguson BJ (2013) Identification of novel factors required for legume nodulation. J Plant Biol Soil Health 1:e6

    Google Scholar 

  • Vargas AAT, Graham PH (1988) Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Res 19:91–101

    Article  Google Scholar 

  • Vargas AAT, Graham PH (1989) Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant Soil 117:195–200

    Article  Google Scholar 

  • Vassileva V, Milanov G, Ignatov G, Nikolov B (1997) Effect of low pH on nitrogen fixation of common bean grown at various calcium and nitrate levels. J Plant Nutr 20:279–294

    Article  CAS  Google Scholar 

  • Von Uexküll H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Whelan AM, Alexander M (1986) Effects of low pH and high Al, Mn and Fe levels on the survival of Rhizobium trifolii and the nodulation of subterranean clover. Plant Soil 92:363–371

    Article  CAS  Google Scholar 

  • Wood M, Cooper JE, Holding AJ (1984) Soil acidity factors and nodulation of Trifolium repens. Plant Soil 78:367–379

    Article  CAS  Google Scholar 

  • Wood M, Cooper JE, Bjourson AJ (1988) Response of Lotus rhizobia to acidity and aluminium in liquid culture and in soil. Plant Soil 107:227–231

    Article  CAS  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, De Bruijn FJ, Stougaard J, Szczyglowski K (2000) Shoot root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Hermon Slade Foundation, University of Queensland strategic funds and the Australian Research Council for provision of Discovery Project grants (DP130103084 and DP130102266). We would like to thank April Hastwell for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett J. Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferguson, B.J., Gresshoff, P.M. (2015). Physiological Implications of Legume Nodules Associated with Soil Acidity. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in a Changing Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-06212-9_6

Download citation

Publish with us

Policies and ethics