Skip to main content

Combustion

  • Chapter
  • First Online:
  • 2252 Accesses

Abstract

The cost of fuel constitutes a major part (15–40 %) of the cost of electricity generation for most fossil fuel power plants (Koornneef et al. 2007). Over the lifetime a boiler plant, a savings of one or one-half a percentage point in the combustion efficiency can save a large amount of money in terms of operating cost. Since the expenditure on fuel is much greater than that on sorbents, the impact of combustion efficiency on the operating cost is greater than that of sorbent utilization performance of the boiler. Furthermore, combustion upset could cause considerable disruption to the operation of a plant. A qualitative as well as quantitative understanding of the process of combustion is, therefore, indeed very important for the rational design as well as optimum operation of the boiler.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A?:

Frequency factor in Eq. (4.14), kg/m2 s (kPa)n

A :

External surface area of char, m2

A g :

Pore surface area/weight of char, m2/kg

a :

Constant in Eq. (4.4)

C p :

Specific heat of char, kJ/kg K

C g , C s :

Oxygen concentration away from the char and on its surface, respectively, in partial pressure, kPa

D g :

Molecular diffusivity of oxygen, m2/s

D p :

Pore diffusion coefficient, m2/s

d v :

Initial diameter of a coal particle, mm

d c , d p :

Diameters of char and average bed particles, respectively, m

E :

Activation energy, kJ/kmol

E 0 :

Mean activation energy for the release of volatiles, Eq. (4.2), kJ/kmol

F dg :

Drag force of gas per unit volume of particle, kN/m3

F ds :

Drag force due to solid–solid interaction per unit volume of particle, kN/m3

G s :

Circulation rate in fast bed, kg/m2 s

g :

Acceleration due to gravity, 9.81 m/s2

HHV:

Heating value of char, kJ/kg

h m :

Mass transfer coefficient expressed in terms of carbon removed, kg(C)/m2 kPa s

h gp :

Gas-particle heat transfer coefficient, kW/m2 K

K g :

Thermal conductivity of gas, kW/m K

K a :

Attrition rate constant for combustion-assisted attrition

K 0 :

Pre-exponential factor in Eq. (4.2), s?1

m c :

Mass char particle, kg

m attr :

Rate of combustion-assisted attrition, kg/s

m :

True order of reaction

m d :

Diffusion limit, kg/m2s

n :

Apparent order of reaction

p :

Exponent in Eq. (4.4)

q :

Specific burning rate of char based on external surface, kg(C)/m2 s

q c :

Kinetic reaction rate limit, kg/m2 s

q i :

Reaction rate based on internal surface area, gm(C)/cm2 s

R :

Gas constant, 8.315 kPa m3/kmol K

R c , R i :

Apparent and intrinsic reaction rate based on external and internal surface area, respectively, kg(C)/m2s (kPa)n

T :

Temperature of the coal, K

T b , T s :

Temperatures of the bed and of the surface of the char, respectively, K

T m :

Mean temperature of the diffusion layer around the char particle, K

t :

Time, s

t v :

Time for devolatilization and combustion, s

U c , U g, U p :

Velocity of char, gas, and average bed particles, respectively, m/s

U 0 :

Superficial gas velocity through bed or furnace referred to 300 K, m/s

U mf :

Minimum fluidization velocity, m/s

V :

Amount of volatile yet to be released, %

V*:

Asymptotic value of the extent of volatilization, %

x :

Fraction of the volatile matter released

? p , ? g :

Density of bed particles and gas, respectively, kg/m3

? b :

Bulk density of the fast bed, kg/m3

? c :

Density of carbon, kg/m3

? ch :

Density of char, kg/m3

n :

Ratio of actual combustion rate and rate attainable if no pore diffusion resistance existed

? :

Effectiveness factor (=1, for regime I)

? :

Local voidage

? p :

Emissivity of char particle

? :

Stefan–Boltzman constant, W/m4 K

? :

Mechanism factor (=1 for CO2 2 for CO)

? :

Ratio of volume to surface area of char, m

? :

Time for complete devolatilization, s

? :

Porosity of char

? :

Fraction of combustion heat reaching the char surface

EAC:

Excess air coefficient

? :

Standard deviation of Gaussian distribution of activation energy, kJ/mol

? :

Viscosity of gas, kg/m s

?H 0 :

Standard enthalpy of formation of the reactions, kJ/mol

Nu :

Nusselt number, \(\frac{{h_{\text{gp}} d_{v} }}{{K_{g} }}\)

Re :

Reynolds number, \(\frac{{(U_{g} - U_{c} )d_{c} \rho_{g} }}{\mu }\)

Sc :

Schmidt number, \(\frac{{D_{g} \rho_{g} }}{\mu }\)

Sh :

Sherwood number, as in Eq. (4.8)

References

  • Anthony, D. B., Howard, J. B., Hottel, H. C., & Meissner, H. P. (1975). Rapid devolatilization of pulverized coal. In 15th Symposium (International) on Combustion, Pittsburgh: Combustion Institute, pp. 1303–1315.

    Google Scholar 

  • Arastoopour, H., Wang, C. H., & Weil, S. A. (1982). Particle–particle interaction force in a dilute gas–solid system. Chemical Engineering Science, 37, 1379.

    Article  Google Scholar 

  • Arena, U., Massimilla, L., Cammarota Sciliano, L., & Basu, P. (1990). Carbon attrition during the combustion of char in a circulating fluidized bed. Combustion Science and Technology, 73, 383–394.

    Article  Google Scholar 

  • Arthur, J. R. (1951). Model reaction between carbon and oxygen. Transaction Faraday Society, 47, 164–178.

    Article  Google Scholar 

  • Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction. London: Academic Press, Chap. 13, p. 441.

    Google Scholar 

  • Basu, P., & Sarkar, A. (1983). Agglomeration of coal–ash in fluidized beds. Fuel, 62, 924–926.

    Article  Google Scholar 

  • Basu, P., & Halder, P. K. (1989). Combustion of single carbon particles in a fast fluidized bed of fine solids. Fuel, 68, 1056–1063.

    Article  Google Scholar 

  • Basu, P., & Fraser. S. (1991). Circulating Fluidized Bed Boilers. Stoneham: Butterworth-Heineman, p. 107.

    Google Scholar 

  • Basu, P., Broughton, J., & Elliott, D. E. (1975). Combustion of single coal particle in fluidised beds. Institute of Fuel, Symposium series, 1, Fluidised Combustion, A3.1–A3.10.

    Google Scholar 

  • Brereton, C. (1997). Combustion Performance,  in CFB, In: J. R. Grace, A. A. Avidan, T. Knowlton (Eds.) Circulating Fluidized Beds, London: Chapman & Hall, 369–415.

    Google Scholar 

  • D’Amore, M., Masi, S., & Salatino, P. (1989). The relevance of macerals in the combustion of a coal char in the chemical kinetic regime. Combustion Science and Technology, 63, pp. 63–73.

    Google Scholar 

  • Daw, C. S., & Krishnan, R. P. (1983). ORNL Report, Report Number, ORNL/TM 8604.

    Google Scholar 

  • Essenhigh, R. H. (1981). Chemistry of coal utilization. In: M. A. Elliott (ed.), 2nd Supplement Volume, New York: Wiley, pp. 1198.

    Google Scholar 

  • Essenhigh, R. H., Froberg, R., & Howard, J. B. (1965). Combustion behaviour of small particles. Industrial and Engineering Chemistry, 57, 32–43.

    Article  Google Scholar 

  • Field, M. A., Gill, D. W., Morgan, B. B., & Hawksley, P. G. W. (1967). Combustion of Pulverised coal, British coal utilization research association (BCURA), Leatherhead, pp. 285–345.

    Google Scholar 

  • Halder, P. K. (1989). Combustion of single coal particles in circulating fluidized bed. Ph.D. Thesis, Technical University of Nova Scotia.

    Google Scholar 

  • Halder, P. K., & Basu, P. (1987). Kinetic rate of electrode carbon in the temperature range 700–900 °C. Canadian Journal of Chemical Engineering, 65, 696–699.

    Article  Google Scholar 

  • Halder, P. K., & Basu, P. (1988). Mass transfer from a coarse particle to a fast bed of fine solids. AIChE Symposium Series 262, 84, 58–64.

    Google Scholar 

  • Hamor, R. J., Smith, I. W., & Tyler, R. J. (1973). Kinetics of combustion of a pulverized brown coal char between 630 and 2200 K. Combustion and Flame, 21(2), 153–162.

    Article  Google Scholar 

  • Hoy, H. R., & Gill, D. W. (Eds.). (1988). Combustion in industrial boilers. Lund, p. 532.

    Google Scholar 

  • Koornneef, J., & Junginger, Faaij, A. (2007). Development of fluidized bed combustion, Progress in Energy and Combustion Science, 33, 19–55.

    Google Scholar 

  • La Nauze, R. D. (1985). Fundamentals of coal combustion in fluidised beds. Chemical engineering research & design, 63.1, 3–33.

    Google Scholar 

  • Li, Y., Zhang, J., Liu, Q., Lu, J., Yue, G., Sarfim, A., & Beer, J. (2001). A study of the reactivity and formation of the unburnt carbon in CFB fly ashes. Development in chemical Engineering and Mineral process, 9, 301–312.

    Article  Google Scholar 

  • Oka, S. N. (2004). Fluidized bed combustion. New York: Marcel Dekker.

    Google Scholar 

  • Pillai, K. K. (1981).  Influence of coal type on devolatilization and combustion in fluidized beds. Journal of the Institute of Energy, 54, 142–50.

    Google Scholar 

  • Ross, I. B., & Davidson, J. F. (1982). The combustion of carbon particles in a fluidized bed. Transactions Institute of Chemical Engineers, 60, 108–114.

    Google Scholar 

  • Sergeant, G. D., & Smith, I. W. (1973). Combustion rate of bituminous coal char in the temperature range 800 to 1700 K. Fuel, 51, 52–57.

    Article  Google Scholar 

  • Smith, I. W. (1971a). The kinetics of combustion of pulverized semi-anthracite in the temperature range 1400–2200 K. Combustion and Flame17(3), 421–428.

    Article  Google Scholar 

  • Smith, I. W. (1971b). Kinetics of combustion of size-graded pulverized fuels in the temperature range 1200–2270 °K Combustion and Flame, 17, 303–314.

    Article  Google Scholar 

  • Smith, I. W., & Tyler, R. J. (1972). Internal burning of pulverized semi-anthracite: The relation between particle structure and reactivity. Fuel, 51, 312–321.

    Article  Google Scholar 

  • Smith, I. W. (1982). The combustion of rates of coal char: A review. In: 19th Symposium (International) on Combustion (pp. 1045–1065). Pittsburgh: Combustion Institute.

    Google Scholar 

  • Tang, J., & Engstrom, F. (1987). Technical assessment of Ahlstrom pyroflow and conventional bubbling fluidized bed combustion systems. In: J. P. Mustonen (Ed.), Proceedings 9th International Conference on Fluidized Bed Combustion (pp. 38–54). New York: ASME.

    Google Scholar 

  • Turnbull, E., Kossakowski, E. R., Davidson, J. F., Hopes, R. B., Blackshaw, H. W., & Goodyer, P. T. Y. (1984). Effect of pressure on combustion of char in fluidized beds. Chemical Engineering Research and Design, 62, 225.

    Google Scholar 

  • Young, B. C., & Smith, I. W. (1981). Eighteenth Symposium (International) on Combustion (pp. 1249–1255). Pittsburgh: Combustion Institute.

    Google Scholar 

  • Weiss, V., Scholer, J., & Fett, F. N. (1988). Mathematical modeling of coal combustion in a circulating fluidized bed reactor. In: P. Basu & J. F. Large (Eds.), Circulating Fluidized Bed Technology II (pp. 289–298). Oxford: Pergamon Press.

    Google Scholar 

  • Waters, P. L. (1975). Factors influencing fluidized combustion of low-grade solid and liquid fuels (pp. C6–3). In: Institute of Fuel Symposium Series 1, London.

    Google Scholar 

  • Wu, S., & Basu, P. (1993). Surface reaction rate of coarse sub-bituminous char particles in the temperature range 600–1340 K. Fuel72, 1429–1433.

    Google Scholar 

  • Wu, S., Sengupta, S. P., & Basu, P. (1991). Generalized mathematical model for CFB boiler furnace. In: A. Manaker (Ed.), Proceedings 10th International Conference on Fluidized Bed Combustion (pp. 1295–1302). New York: ASME.

    Google Scholar 

  • Xiao, X., Yang, H., Zhang, H., Lu, J., & Yue, G. (2005). Research on carbon content in fly ash from circulating fluidized bed boilers. Energy and Fuels, 19, 1520–1525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Basu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basu, P. (2015). Combustion. In: Circulating Fluidized Bed Boilers. Springer, Cham. https://doi.org/10.1007/978-3-319-06173-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06173-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06172-6

  • Online ISBN: 978-3-319-06173-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics