Skip to main content

Heat Transfer

  • Chapter
  • First Online:
Circulating Fluidized Bed Boilers
  • 2374 Accesses

Abstract

The magnitude and locations of heating surfaces in a boiler greatly influence its thermal efficiency and output. For example, if less than required heat-absorbing surfaces are provided in the furnace, the steam generation would reduce, and if that is to be retained, the combustion temperature would have to rise adversely affecting the sulfur capture and increase corrosion potential of downstream tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Surface area of wall receiving radiation, m2

A f :

Area of fin, m2

A 0 :

Outer surface area of tubes in external heat exchanger, m2

A w :

Boiler surface areas exposed to the upper furnace, m2

B :

Constant in Eq. (3.20)

C c , C p, C f , C g :

Specific heat of cluster, solid, steam, and gas, respectively, kJ/kg K

D b :

Equivalent diameter of bed, m

D c :

Equivalent diameter of cluster, m

d cp :

Diameter of coarser particles, m

d p :

Diameter of average bed particles, m

e b, e c, e d, e g, e p, e s :

Emissivity of bubbling bed, cluster, dispersed phase, gas, particle and wall surface, respectively

\(e^{\prime}_{\text{p}}\) :

Effective emissivity of particle cloud

g :

Acceleration due to gravity, 9.81 m/s2

h :

Overall heat transfer coefficient, kW/m2 K

h c :

Convective heat transfer coefficient due to clusters, kW/m2 K

h cr :

Radiative heat transfer coefficient due to clusters, kW/m2 K

h conv :

Total convective heat transfer coefficient, kW/m2 K

h d :

Convective heat transfer coefficient due to dilute phase, kW/m2 K

h dr :

Radiative heat transfer coefficient due to dilute phase, kW/m2 K

h gp :

Gas-particle heat transfer coefficient, kW/m2 K

h o , h i :

Heat transfer coefficients for the external, and internal surface of the tube, respectively, kW/m2 K

h r :

Total radiative heat transfer coefficient, kW/m2 K

h t :

Heat transfer coefficient on a cluster after residing for a time, t on the wall, kW/m2 K

h tube :

Overall heat transfer coefficient on the tube, kW/m2 K

J :

Thermal time constant, kW/m K

K g, K gf, K c :

Thermal conductivity of gas, gas film, and cluster, respectively, kW/m K

K m, K p :

Thermal conductivity of tube metal and particles, respectively, kW/m K

K :

Constant in Eq. (3.7)

K c , K r :

Empirical constants in Eq. (3.30)

L :

Vertical length of the heat transferring surface, m

L b :

Fin efficiency

n 1, n 2 :

Empirical constants in Eq. (3.30)

Q f :

Heat absorbed by the furnace wall, kW

Q a :

Heat absorbed by the furnace wall, kW

Q fbhe :

Heat absorbed in external heat exchanger, kW

R :

Radius of the bed, m

r :

Radial distance from the center of the bed, m

r o, r i :

Outer and inner radius of heat transferring tube, m

S :

Surface area of particles per unit weight of particles, m2/kg

T b, T g, T s , T p :

Temperatures of the bed, gas, heat transferring wall, and bed particle, respectively, K

T ehe :

Temperature of the external heat exchanger, K

T po :

Initial temperature of the particles, K

T go :

Temperature of the gas entering the bed, K

T w :

Temperature of the boiler wall in upper furnace, K

T 99% :

Limit in Eq. (3.5) expressed as T go + 0.99 (T p  − T go), K

t :

Time, s

t 99% :

Time required for gas-particle temperature difference to reduce to 1 % of its original value, s

t c :

Mean residence time of cluster on wall, s

U :

Superficial gas velocity through fast bed, m/s

U ehe :

Superficial velocity through external heat exchanger, m/s

U c :

Velocity of cluster on wall, m/s

U cp :

Average velocity of coarser particle, m/s

U m :

Maximum fall velocity of clusters, m/s

U mf :

Minimum fluidization velocity, m/s

U p :

Solid velocity, m/s

U t :

Terminal velocity of a single particle, m/s

V :

Volume of the bed, m3/s

V i :

Velocity of steam in tube, m/s

W :

Solid circulation rate, kg/m2 s

X 99% :

Distance required for gas to reach 99 % of the overall bed temperature, m

x :

Distance along the height of the fast bed, m

Y :

Volume fraction of solid in the dispersed phase

Y′:

Volume fraction of solids in the interior of the furnace

ε :

Cross-sectional average voidage

ε c :

Voidage in cluster

ε w :

Voidage near the wall

ε(r):

Voidage at a radius r from the center

η f :

Heat absorbed by fin, kW

ρ avg :

Cross-sectional average bed density, kg/m3

ρ c :

Density of cluster, kg/m3

ρ f :

Density of steam, kg/m3

ρ b :

Bulk density of the bed, kg/m

ρ dis :

Density of dispersed phase, kg/m3

ρ g :

Density of gas, kg/m3

ρ p :

Density of bed material, kg/m3

μ g :

Viscosity of gas, N s/m2

μ f , μ fw :

Viscosity of steam at bulk temperature and wall temperature, respectively, N s/m2

δ c :

Time-averaged fraction of wall area covered by cluster

σ :

Stefan–Boltzman constant (5.67 × 10−11 kW/m2 K4)

Ar :

Archimedes number

Pr, Pr f :

Prandtl number of the gas and steam, respectively

Re, Re f :

Reynolds number of gas and steam, respectively

Re cp :

Reynolds number of coarse particles based on gas-particle slip velocity

References

  • Abdulally, I. F., & Parham, D. (1989). Design and operating experience of Foster wheeler circulating fluidized bed boiler. In A. Manaker (Ed.), Proceedings of 10th International Conference on Fluidized Bed Combustion (pp. 279–287). New York: ASME.

    Google Scholar 

  • Andeen, B. R., & Glicksman, L. (1976). Heat Transfer Conference on ASME Paper 76-HT-67.

    Google Scholar 

  • Andersson, B. A., Johnsson, F., & Leckner, B. (1987). Heat flow measurement in fluidized bed boilers. In J. P. Mustonen (Ed.), Proceedings of 9th International Conference on Fluidized Bed Combustion (pp. 592–598). New York: ASME.

    Google Scholar 

  • Basu, P. (1990). Heat transfer in fast fluidized bed combustors. Chemical Engineering Science, 45(10), 3123–3136.

    Article  Google Scholar 

  • Basu, P., Ali, N., Nag, P. K., & Lawrence, D. (1991). Heat transfer to finned surfaces in a fast fluidized bed. International Journal of Heat and Mass Transfer, 34(9), 2317–2326.

    Article  Google Scholar 

  • Bi, H., Jin, Z., Yu, Z., & Bai, D. R. (1991). An investigation of heat transfer in circulating fluidized bed. In P. Basu, M. Hasatani, & M. Horio (Eds.), Circulating fluidized bed technology III (pp. 233–238). Oxford: Pergamon Press.

    Google Scholar 

  • Boyd, T. (1991). EPRI Private Communications.

    Google Scholar 

  • Brewster, M. Q. (1986). Effective absorptivity and emissivity of particulate medium with application to a fluidized bed. Trans. of ASME, New York, 108, August, pp. 710–713.

    Google Scholar 

  • Carson, W. R. (1985). Interpretation of heat transfer data on 20 MWe TVA unit. In Proceedings of 8th International Conference on Fluidized Bed Combustion (p. 211), DOE/METC-856021, Morgantown, July.

    Google Scholar 

  • Dutta, A., (2002). Heat transfer in circulating fluidized bed boilers. PhD thesis, Dalhousie University, Mechanical Engineering, August.

    Google Scholar 

  • Dutta, A., & Basu, P. (2002). Overall heat transfer to water walls and wing walls of commercial circulating fluidized boilers. Journal of the Institute of Energy, 75(504), 85–90.

    Google Scholar 

  • Gottung, E. J., & Darling, S. L. (1989). Design considerations for CFB steam generators. In A. Manaker (Ed.), Proceedings of 10th International Conference on Fluidized Bed Combustion (pp. 617–623). New York: ASME.

    Google Scholar 

  • Glicksman, L. R. (1988). Circulating fluidized bed heat transfer. In P. Basu & J. F. Large (Eds.), Circulating fluidized bed technology II (pp. 13–30). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Grace, J. R. (1982). Fluidized bed heat transfer. In G. Hestroni (Ed.), Handbook of multiphase flow (pp. 9–70). Washington, DC: McGraw-Hill Hemisphere.

    Google Scholar 

  • Gupta, A. V. S. S. K. S., & Nag, P. K. (2000). Prediction of heat transfer coefficient in the cyclone separator of a CFB. International Journal of Energy Research, 24(12), 1065–1079.

    Article  Google Scholar 

  • Halder, P. K. (1989). Combustion of single carbon particles in CFB combustors. Ph.D dissertation, Technical University of Nova Scotia.

    Google Scholar 

  • Leckner, B. (1991). Heat transfer in circulating fluidized bed boilers. In P. Basu, M. Hasatani, & M. Horio (Eds.), Circulating fluidized bed technology III (pp. 27–38). Oxford: Pergamon Press.

    Google Scholar 

  • Leckner, B., Golriz, M. R., Zhang, W., Andersson, B. A., & Johnsson, F. (1991). Boundary layers-first measurements in the 12 MW CFB research plant at Chalmers University. In E. J. Anthony (Ed.), Proceedings of 11th International Conference on Fluidized Bed Combustion (pp. 771–776). New York: ASME.

    Google Scholar 

  • Li, J., Tung, Y., & Kwauk, M. (1988). Energy transport and regime transition in particle-fluid two phase flow. In P. Basu & J. F. Large (Eds.), Circulating fluidized bed technology II (pp. 75–88). Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Mickley, H. S., & Fairbanks, D. F. (1955). Mechanism of heat transfer to fluidized beds. AICHE Journal, 1(3), 374–384.

    Article  Google Scholar 

  • Plass, L., Beisswneger, H., Anders, R., & Lienhard, H. (1989). Operating experiences from large scale CFB power plants and design criteria for new CFB power plants. In A. Manaker (Ed.), Proceedings of 10th International Conference on Fluidized Bed Combustion (pp. 717–728). New York: ASME.

    Google Scholar 

  • Ranz, W. E., & Marshall, W. R. (1952). Chemical Engineering Progress (Vol. 48, p. 247).

    Google Scholar 

  • Salatino, P., & Massimilla, L. (1989). A predictive model of carbon attrition in fluidized bed combustion and gasification of a graphite. Chemical Engineering Science, 44(5), 1091–1099.

    Article  Google Scholar 

  • Tung, Y., Li, J., & Kwauk, M. (1988). Radial voidage profile in a fast fluidized bed. In M. Kwauk & D. Kunii (Eds.), Fluidization ’88 (pp. 139–145). Beijing: Science Press.

    Google Scholar 

  • Turek, D.G., Sopko, S.J., & Jansesen, K. (1985). A generic circulating fluidized bed for cogenerating steam, electricity and hot air. In Proceedings of 8th International Conference on Fluidized Bed Combustion (Vol. 1, pp. 395–405), DOE/METC-856021, July 1985.

    Google Scholar 

  • Wang, Z., Yang, J., & Li, Q. (2012). Calculation and analysis of heat transfer coefficients in a circulating fluidized bed boiler furnace. In Proceedings of 20th International conference on Fluidized bed combustion (pp. 172–179).

    Google Scholar 

  • Watanabe, T., Yong, C., Hasatani, M., Yushen, X., & Naruse, I. (1991). Gas to particle heat transfer in fast fluidized bed. In P. Basu, M. Hasatani, & M. Horio (Eds.), Circulating fluidized bed technology III (pp. 283–287). Oxford: Pergamon Press.

    Google Scholar 

  • Wen, C. Y., & Miller, E. N. (1961). Heat transfer in solid-gas transport lines. Industrial and Engineering Chemistry, 53, 51–53.

    Article  Google Scholar 

  • Wu, R., Grace, J. R., Lim, J., & Brereton, C. M. H. (1989). Suspension to surface heat transfer in a circulating fluidized bed combustor. AIChE Journal, 35, 1685–1691.

    Article  Google Scholar 

  • Wu, H., Zhang, M., Lu, Q., & Sun, Y. (2012). The heat transfer coefficients of the heating surface of 300 MWe CFB boiler. Journal of Thermal Science, 21(4), 368–376.

    Article  Google Scholar 

  • Zhang, H., Lu, J., Yang, H., Yang, J., Wang, Y., Xia, X. et al. (2005). Heat transfer measurements inside the furnace of a 135 MWe CFB boiler. In K. Ce (Ed.), Circulating fluidized bed technology VIII (pp. 254–260). Beijing: International Academic Publisher.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Basu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basu, P. (2015). Heat Transfer. In: Circulating Fluidized Bed Boilers. Springer, Cham. https://doi.org/10.1007/978-3-319-06173-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06173-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06172-6

  • Online ISBN: 978-3-319-06173-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics