Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 795 Accesses

Abstract

Internal motions in ubiquitin have been studied extensively by NMR. Indeed, ubiquitin has been used for two decades as a standard for biomolecular NMR, and new methods have been frequently validated with experiments on ubiquitin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results of heteronuclear NOE measurements are commonly presented as the ratio of the signal intensities measured at the steady state under effective proton saturation (\(I^{\text {ss}}\)) and at equilibrium (\(I^{\text {eq}}\)). Such ratio is close to 1 for ordered regions and lower for disordered ones, and depends on both \(\sigma _{\text {NH}}\) and R\(_{1}\) [63]:

    $$\begin{aligned} \frac{I^{\text {ss}}}{I^{\text {eq}}}=1+\frac{\gamma _{\text {H}}\sigma _{\text {NH}}}{\gamma _{\text {N}}\text {R}_{1}}. \end{aligned}$$

    In the case of the hexapeptide region \(\sigma _{\text {NH}}\) is smaller than the values measured in the rest of the N-terminal extension, while R\(_{1}\) is larger. Therefore, exploiting the combined effects on \(\sigma _{\text {NH}}\) and R\(_{1}\), \(I^{\text {ss}}/I^{\text {eq}}\) is more sensitive to the presence of order than the two probes individually.

References

  1. Schneider DM, Dellwo MJ, Wand AJ (1992) Biochemistry 31:3645

    Article  CAS  Google Scholar 

  2. Tjandra N, Feller SE, Pastor RW (1995) J Am Chem Soc 117:12562

    Article  CAS  Google Scholar 

  3. Showalter SA, Brüschweiler R (2007) J Chem Theory Comput 3:961

    Article  CAS  Google Scholar 

  4. Maragakis P, Lindorff-Larsen K (2008) J Phys Chem B 112:6155

    Article  CAS  Google Scholar 

  5. Massi F, Grey MJ, Palmer AG (2005) Protein Sci 14:735

    Article  CAS  Google Scholar 

  6. Majumdar A, Ghose R (2004) J Biomol NMR 28:213

    Article  CAS  Google Scholar 

  7. Pelupessy P, Ferrage F, Bodenhausen G (2007) J Chem Phys 126:134508

    Article  CAS  Google Scholar 

  8. Hansen DF, Feng H, Zhou Z, Bai Y (2009) J Am Chem Soc 131:16257

    Article  CAS  Google Scholar 

  9. Mills JL, Szyperski T (2002) J Biomol NMR 23:63

    Article  CAS  Google Scholar 

  10. Dittmer J, Bodenhausen G (2004) J Am Chem Soc 126:1314

    Article  CAS  Google Scholar 

  11. Wist J, Frueh D, Tolman JR, Bodenhausen G (2004) J Biomol NMR 28:263

    Article  CAS  Google Scholar 

  12. Ban D, Funk M, Gulich R, Egger D, Sabo TM, Walter KFA, Fenwick RB, Giller K, Pichierri F, de Groot BL, Lange OF, Grubmüller H, Salvatella X, Wolf M, Loidl A, Kree R, Becker S, Lakomek N-A, Lee D, Lunkenheimer P, Griesinger C (2011) Angew Chem Int Ed 50:11437

    Article  CAS  Google Scholar 

  13. Peti W, Meiler J, Brüschweiler R, Griesinger C (2002) J Am Chem Soc 124:5822

    Article  CAS  Google Scholar 

  14. Lakomek N-A, Walter KFA, Farès C, Lange OF, Groot BL, Grubmüller H, Brüschweiler R, Munk A, Becker S, Meiler J, Griesinger C (2008) J Biomol NMR 41:139

    Article  CAS  Google Scholar 

  15. Salmon L, Bouvignies G, Markwick P, Blackledge M (2011) Biochemistry 50:2735

    Article  CAS  Google Scholar 

  16. Lange OF, Lakomek NA, Farès C, Schröder GF, Walter KFA, Becker S, Meiler J, Grubmuller H, Griesinger C, de Groot BL (2008) Science 320:1471

    Article  CAS  Google Scholar 

  17. Fenwick RB, Esteban-Martín S, Richter B, Lee D, Walter KFA, Milovanovic D, Becker S, Lakomek N-A, Griesinger C, Salvatella X (2011) J Am Chem Soc 133:10336

    Article  CAS  Google Scholar 

  18. Penengo L, Mapelli M, Murachelli AG, Confalonieri S (2006) Cell 124:1183

    Article  CAS  Google Scholar 

  19. Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH (2006) Nature Struct Mol Biol 13:264

    Article  CAS  Google Scholar 

  20. Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C (2006) Nature Struct Mol Biol 13:915

    Article  CAS  Google Scholar 

  21. Dikic I, Wakatsuki S, Walters KJ (2009) Nature Rev Mol Cell Biol 10:659

    Article  CAS  Google Scholar 

  22. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) J Am Chem Soc 120:6836

    Article  CAS  Google Scholar 

  23. Schrödinger LLC (2010) The PyMOL molecular graphics system, version 1.3r1

    Google Scholar 

  24. Wang C, Palmer AG (2003) Magn Reson Chem 41:866

    Article  CAS  Google Scholar 

  25. Pelupessy P, Espargallas GM, Bodenhausen G (2003) J Magn Reson 161:258

    Article  CAS  Google Scholar 

  26. Salvi N, Ulzega S, Ferrage F, Bodenhausen G (2012) J Am Chem Soc 134:2481

    Article  CAS  Google Scholar 

  27. Kloiber K, Konrat R (2000) J Biomol NMR 18:33

    Article  CAS  Google Scholar 

  28. Cole R, Loria JP (2002) Biochemistry 41:6072

    Article  CAS  Google Scholar 

  29. Doucet N, Khirich G, Kovrigin EL, Loria JP (2011) Biochemistry 50:1723

    Article  CAS  Google Scholar 

  30. Sidhu A, Surolia A, Robertson AD, Sundd M (1037) J Mol Biol 2011:411

    Google Scholar 

  31. Huang KY, Amodeo GA, Tong L, McDermott A (2011) Protein Sci 20:630

    Article  CAS  Google Scholar 

  32. Igumenova TI, Wand AJ, McDermott AE (2004) J Am Chem Soc 126:5323

    Article  CAS  Google Scholar 

  33. Zandarashvili L, Li D-W, Wang T, Brüschweiler R, Iwahara J (2011) J Am Chem Soc 133:9192

    Article  CAS  Google Scholar 

  34. Esadze A, Li D-W, Wang T, Brüschweiler R, Iwahara J (2011) J Am Chem Soc 133:909

    Article  CAS  Google Scholar 

  35. Vögeli B, Segawa TF, Leitz D, Sobol A (2009) J Am Chem Soc 131:17215

    Article  CAS  Google Scholar 

  36. Kitahara R, Yokoyama S, Akasaka K (2005) J Mol Biol 347:277

    Article  CAS  Google Scholar 

  37. Meiler J, Peti W, Griesinger C (2003) J Am Chem Soc 125:8072

    Article  CAS  Google Scholar 

  38. Gunasekaran K, Ma B, Nussinov R (2004) Proteins Struct Funct Bioinf 57:433

    Google Scholar 

  39. Long D, Brüschweiler R (2011) J Am Chem Soc 133:18999

    Article  CAS  Google Scholar 

  40. Garner TP, Strachan J, Shedden EC, Long JE, Cavey JR, Shaw B, Layfield R, Searle MS (2011) Biochemistry 50:9076

    Google Scholar 

  41. Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Cell 91:741

    Article  CAS  Google Scholar 

  42. Goto NK, Zor T, M-Yamout M, Dyson HJ, Wright PE (2002) J Biol Chem 277:43168

    Article  CAS  Google Scholar 

  43. Eliezer D, Palmer AG (2007) Nature 447:920

    Article  CAS  Google Scholar 

  44. Sugase K, Dyson HJ, Wright PE (1021) Nature 2007:447

    Google Scholar 

  45. Horng J-C, Tracz SM, Lumb KJ, Raleigh DP (2005) Biochemistry 44:627

    Article  CAS  Google Scholar 

  46. Tollinger M, Kloiber K, Agoston B, Dorigoni C, Lichtenecker R, Schmid W, Konrat R (2006) Biochemistry 45:8885

    Article  CAS  Google Scholar 

  47. Schanda P, Brutscher B, Konrat R, Tollinger M (2008) J Mol Biol 380:726

    Article  CAS  Google Scholar 

  48. Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Cell 91:741

    Article  CAS  Google Scholar 

  49. Orekhov VY, Korzhnev DM, Kay LE (1886) J Am Chem Soc 2004:126

    Google Scholar 

  50. Korzhnev DM, Kloiber K, Kay LE (2004) J Am Chem Soc 126:7320

    Article  CAS  Google Scholar 

  51. Mittag T, Kay LE, Forman-Kay JD (2010) J Mol Recognit 23:105

    CAS  Google Scholar 

  52. Joyner AL (1996) Trends Genet 12:15

    Article  CAS  Google Scholar 

  53. McGinnis W, Levine MS, Hafen E, Kuroiwa A (1984) Nature 308:428

    Article  CAS  Google Scholar 

  54. Fraenkel E, Rould MA, Chambers KA, Pabo CO (1998) J Mol Biol 284:351

    Article  CAS  Google Scholar 

  55. Augustyniak R (2011) NMR studies of the partially disordered protein Engrailed 2 and new NMR methods for diffusion measurements and protein sidechain assignments. Ph.D. thesis, Université Pierre et Marie Curie

    Google Scholar 

  56. Foucher I, Montesinos ML, Volovitch M, Prochiantz A, Trembleau A (1867) Development 2003:130

    Google Scholar 

  57. Piper DE, Batchelor AH, Chang CP, Cleary ML, Wolberger C (1999) Cell 96:587

    Article  CAS  Google Scholar 

  58. Augustyniak R, Balayssac S, Ferrage F, Bodenhausen G, Lequin O (2011) Biomol NMR Assign 5:229

    Article  CAS  Google Scholar 

  59. Klein-Seetharaman J, Oikawa M, Grimshaw SB (2002) Science 295:1657

    Article  Google Scholar 

  60. Buevich AV, Shinde UP, Inouye M, Baum J (2001) J Biomol NMR 20:233

    Article  CAS  Google Scholar 

  61. Mackay JP, Muiznieks LD, Toonkool P, Weiss AS (2005) J Struct Biol 150:154

    Article  CAS  Google Scholar 

  62. Prasch S, Schwarz S, Eisenmann S, Wöhrl BM, Schweimer K, Rösch P (2006) Biochemistry 45:4542

    Article  CAS  Google Scholar 

  63. Ferrage F (2012) Methods Mol Biol 831:141

    Article  CAS  Google Scholar 

  64. Kroenke CD, Loria JP, Lee LK, Rance M (1998) J Am Chem Soc 120:7905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Salvi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salvi, N. (2014). Experimental Results. In: Dynamic Studies Through Control of Relaxation in NMR Spectroscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06170-2_5

Download citation

Publish with us

Policies and ethics