Turbulent Flows

  • Evgeny Barkhudarov
Part of the Springer Theses book series (Springer Theses)


Turbulence is a widespread phenomenon in the dynamics of fluids. For decades, it has stimulated scientific research across various fields of mathematics, engineering and physics. Turbulent motion can be made visible by observing cloud formation in the atmosphere, for example. An overwhelming number of possible patterns in the motion underlies the complexity of this phenomenon. Turbulence is a state of a fluid which, in the case of neutral fluids, is governed by the Navier-Stokes equation. The problem of turbulence lies in the difficulty of describing a solution to the dynamical equation.


Inertial Range Fluid Element Jacobian Determinant Noise Field Functional Probability Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Parviz, K. John, Tackling turbulence with supercomputers. Sci. Am. 276(1), 62 (1997)CrossRefGoogle Scholar
  2. 2.
    E.R. Priest, A.W. Hood, Advances in Solar System Magnetohydrodynamics (Cambridge University Press, Cambridge, 1991)Google Scholar
  3. 3.
    T. Ogino, R.J. Walker, M. Ashour-Abdalla, A three-dimensional MHD simulation of the interaction of the solar wind with Comet Halley. J. Geophys. Res. 93(A9), 9568 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    K.G. Powell, A.F. Nagy, Global MHD simulations of space plasma environments: heliosphere, comets, magnetospheres of planets and satellites. Astrophys. Space Sci. 274, 407 (2000)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    R.D. Simitev, F.H. Busse, A.G. Kosovichev, Turbulent 3D MHD Dynamo Model in Spherical Shells: Regular Oscillations of the Dipolar Field, eprint arXiv/1102.1092 (2011)Google Scholar
  6. 6.
    P.A. Durbin, B.A. Pettersson Reif, Statistical Theory and Modelling of Turbulent Flows (Wiley, Chichester, 2011)Google Scholar
  7. 7.
    W.D. McComb, The Physics of Fluid Turbulence (Oxford University Press, Oxford, 1990)Google Scholar
  8. 8.
    U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)zbMATHGoogle Scholar
  9. 9.
    D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University Press, Cambridge, 1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    M.J. Vishik, A.V. Fursikov, Mathematical Problems of Statistical Hydrodynamics (Kluwer, Dordrecht, 1988)CrossRefGoogle Scholar
  11. 11.
    A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 9 (1941)Google Scholar
  12. 12.
    A.N. Kolmogorov, On degeneration of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538 (1941)zbMATHGoogle Scholar
  13. 13.
    A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16 (1941)ADSzbMATHGoogle Scholar
  14. 14.
    A.N. Kolmogorov, On logarithmically normal law of distribution on the size of particles under pulverization. Dokl. Akad. Nauk SSSR 31, 99 (1941)Google Scholar
  15. 15.
    E. Hopf, J. Ration. Mech. Anal. 1, 87 (1952)zbMATHMathSciNetGoogle Scholar
  16. 16.
    H.H. Shen, A.A. Wray, Stationary turbulent closure via the hopf functional equation. J. Stat. Phys. 62, 33 (1990)MathSciNetGoogle Scholar
  17. 17.
    R.M. Lewis, R.H. Kraichnan, A space-time functional formalism for turbulence. Commun. Pure Appl. Math. 15, 397 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497 (1959)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    G.F. Mazenko, Equilibrium Statistical Mechanics (Wiley, New York, 2000)zbMATHGoogle Scholar
  20. 20.
    Y. Zhou, Renormalization group theory for fluids and plasma turbulence. Phys. Rep. 488(1), 1–49 (2010)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    R.H. Kraichnan, Hydrodynamic turbulence and the renormalization group theory. Phys. Rev. A 25, 3281 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17, 549 (1905)CrossRefzbMATHGoogle Scholar
  23. 23.
    S. Ma, G.F. Mazenko, Critical dynamics of ferromagnets in 6-\(\epsilon \) dimensions: general discussion and detailed calculation. Phys. Rev. B 11, 4077 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    D. Forster, D.R. Nelson, M.J. Stephen, Large distance and long time properties of a randomly stirred fluid. Phys. Rev. A 16, 732 (1977)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    C. de Dominicis, P.C. Martin, Energy spectra of certain randomly-stirred fluids. Phys. Rev. A 19, 419 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Fournier, U. Frisch, Remarks on the renormalization group in statistical fluid mechanics. Phys. Rev. A 28, 1000 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. Phys. Rev. Lett. 57, 1722 (1986)ADSCrossRefGoogle Scholar
  28. 28.
    G.L. Eyink, The renormalization group method in statistical hydrodynamics. Phys. Fluids 6, 3063 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    L.M. Smith, W.C. Reynolds, On the Yakhot-Orszag renormalization group methods for deriving turbulence statistics and models. Phys. Fluids A 4, 364 (1992)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    X.H. Wang, F. Wu, One modification to the Yakhot-Orszag calculation in the renormalization-group theory of turbulence. Phys. Rev. E 48, R37 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    M.K. Nandy, Symmetrization of the self-energy integral in the Yakhot-Orszag renormalization-group calculation. Phys. Rev. E 55, 5455 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    J.-D. Fournier, P.-L. Sulem, A. Pouquet, Infrared properties if forced magnetohydrodynamic turbulence. J. Phys. A: Math. Gen. 15, 1393 (1982)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    W.M. Elsässer, The hydromagnetic equations. Phys. Rev. 79, 183 (1950)ADSCrossRefGoogle Scholar
  34. 34.
    W.D. McComb, Galilean invariance and vertex renormalization in turbulence theory. Phys. Rev. E 71, 037301 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    A. Berera, D. Hochberg, Galilean invariance and homogeneous anisotropic randomly stirred flows. Phys. Rev. E 72, 057301 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    S.J. Camargo, H. Tasso, Renormalization group in magnetohydrodynamics turbulence. Phys. Fluids B 4(5), 1199–1212 (1992)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    A. Berera, D. Hochberg, Asymptotic Properties of Turbulent Magnetohydrodynamics, arXiv/cond-mat/0103447 (2006)Google Scholar
  38. 38.
    A. Berera, D. Hochberg, Gauge symmetry and Slavnov-Taylor identities for randomly stirred fluids. Phys. Rev. Lett. 99, 254501 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    C.-B. Kim, T.-J. Yang, Renormalization-group analysis on the scaling of the randomly-stirred magnetohydrodynamic plasmas. Phys. Plasmas 6(7), 2714–2720 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    M. Hnatich, J. Honkonen, M. Jurcisin, Stochastic magnetohydrodynamic turbulence in dimensions \(d\ge 2\). Phys. Rev. E 64, 056411 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    R.J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge University Press, Cambridge, 1987)CrossRefzbMATHGoogle Scholar
  42. 42.
    R. Pythian, The functional formalism of classical statistical dynamics. J. Phys. A: Math. Gen. 10, 777 (1977)ADSCrossRefGoogle Scholar
  43. 43.
    D. Hochberg, C. Molina-París, J. Pérez-Mercader, M. Visser, Effective action for stochastic partial differential equations. Phys. Rev. E 60, 6343 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    D. Hochberg, C. Molina-Parıs, J. Perez-Mercader, M. Visser, Effective Potential for the Massless KPZ Equation, arXiv/cond-mat/9904391v1 [cond-mat.stat-mech] (1999)Google Scholar
  45. 45.
    D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (McGraw-Hill Inc., London, 1978)Google Scholar
  46. 46.
    D. Homeier, G. Münster, Renormalization Group Analysis of Turbulent Hydrodynamics, arXiv/1012.0461 (2010)Google Scholar
  47. 47.
    M. Le Bellac, Quantum and Statistical Field Theory (Oxford University Press, Oxford, 1991)Google Scholar
  48. 48.
    R.D. Mattuck, A Guide to Feynman Diagrams in the Many-body Problem, 2nd edn. (McGraw-Hill International Book Company, New York, 1976)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.The Blackett LaboratoryImperial College LondonLondonUK

Personalised recommendations