Skip to main content

Targeting (Gut)-Immune-Brain Axis with Pharmaceutical and Nutritional Concepts: Relevance for Mental and Neurological Disorders

  • Chapter
  • First Online:
Pharma-Nutrition

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 12))

  • 2088 Accesses

Abstract

Like our nervous system, the immune system can be regarded as a “sensory” organ to detect factors the body cannot otherwise hear, see, smell, taste, or touch. A lot of scientific evidence exists demonstrating bidirectional pathways between the (central) nervous system and immune system. Disrupted communication between the (central) nervous system and immune system has been implicated in various mental disorders, including depressive, neurodegenerative, and neurodevelopmental disorders. In this chapter the role of the neuro-immune axis and its targetability in relation to neurological disorders, such as depression and autism is discussed. The management of these and possibly other multifactorial psychiatric disorders needs a new and integrated therapeutic approach. Pharmacologically bioactive molecules as well as medical nutrition targeting the (gut)-immune-brain axis could be such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blalock JE, Smith EM (2007) Conceptual development of the immune system as a sixth sense. Brain Behav Immun 21:23–33

    CAS  PubMed  Google Scholar 

  2. Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12:453–466

    CAS  PubMed  Google Scholar 

  3. Costa M, Brookes SJ, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47(Suppl 4):iv15–iv19, discussion iv26

    PubMed Central  PubMed  Google Scholar 

  4. Kennedy PJ, Clarke G, Quigley EM, Groeger JA, Dinan TG, Cryan JF (2012) Gut memories: towards a cognitive neurobiology of irritable bowel syndrome. Neurosci Biobehav Rev 36:310–340

    PubMed  Google Scholar 

  5. Cryan JF, O'Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187–192

    CAS  PubMed  Google Scholar 

  6. Engel MA, Becker C, Reeh PW, Neurath MF (2011) Role of sensory neurons in colitis: increasing evidence for a neuroimmune link in the gut. Inflamm Bowel Dis 17:1030–1033

    PubMed  Google Scholar 

  7. Rosa AC, Fantozzi R (2013) Histamine in the neurogenic inflammation. Br J Pharmacol. doi:10.1111/bph.12266

    PubMed  Google Scholar 

  8. Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron 78:214–232

    CAS  PubMed  Google Scholar 

  9. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

    PubMed Central  PubMed  Google Scholar 

  10. Jensen CJ, Massie A, De Keyser J (2013) Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol 8(4):824–839

    PubMed  Google Scholar 

  11. Ohtori S, Takahashi K, Moriya H, Myers RR (2004) TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976) 29:1082–1088

    Google Scholar 

  12. Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S, LaFerla FM, Callahan LM, Federoff HJ, Bowers WJ (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173:1768–1782

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang N, Oppenheim JJ (2005) Crosstalk between chemokines and neuronal receptors bridges immune and nervous systems. J Leukoc Biol 78:1210–1214

    CAS  PubMed  Google Scholar 

  14. Rijnierse A, Kroese AB, Redegeld FA, Blokhuis BR, van der Heijden MW, Koster AS, Timmermans JP, Nijkamp FP, Kraneveld AD (2009) Immunoglobulin-free light chains mediate antigen-specific responses of murine dorsal root ganglion neurons. J Neuroimmunol 208:80–86

    CAS  PubMed  Google Scholar 

  15. Rijnierse A, Kraneveld AD, Salemi A, Zwaneveld S, Goumans AP, Rychter JW, Thio M, Redegeld FA, Westerink RH, Kroese AB (2013) Immunoglobulin free light chains reduce in an antigen-specific manner the rate of rise of action potentials of mouse non-nociceptive dorsal root ganglion neurons. J Neuroimmunol 264(1–2):14–23

    CAS  PubMed  Google Scholar 

  16. Niu N, Zhang J, Guo Y, Zhao Y, Korteweg C, Gu J (2011) Expression and distribution of immunoglobulin G and its receptors in the human nervous system. Int J Biochem Cell Biol 43:556–563

    CAS  PubMed  Google Scholar 

  17. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    CAS  PubMed  Google Scholar 

  18. Reardon C, Duncan GS, Brüstle A, Brenner D, Tusche MW, Olofsson PS, Rosas-Ballina M, Tracey KJ, Mak TW (2013) Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proc Natl Acad Sci U S A 110:1410–1415

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101

    CAS  PubMed  Google Scholar 

  20. Lambrecht BN (2001) Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation. Respir Res 2:133–138

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ganea D, Delgado M (2001) Inhibitory neuropeptide receptors on macrophages. Microbes Infect 3:141–147

    CAS  PubMed  Google Scholar 

  22. Busch-Dienstfertig M, Labuz D, Wolfram T, Vogel NN, Stein C (2012) JAK-STAT1/3-induced expression of signal sequence-encoding proopiomelanocortin mRNA in lymphocytes reduces inflammatory pain in rats. Mol Pain 8:83–95

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Busch-Dienstfertig M, Stein C (2010) Opioid receptors and opioid peptide-producing leukocytes in inflammatory pain–basic and therapeutic aspects. Brain Behav Immun 24:683–694

    CAS  PubMed  Google Scholar 

  24. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15:331–345

    CAS  PubMed  Google Scholar 

  25. Filippini P, Cesario A, Fini M, Locatelli F, Rutella S (2012) The Yin and Yang of non-neuronal α7-nicotinic receptors in inflammation and autoimmunity. Curr Drug Targets 13:644–655

    CAS  PubMed  Google Scholar 

  26. Nijhuis LE, Olivier BJ, de Jonge WJ (2010) Neurogenic regulation of dendritic cells in the intestine. Biochem Pharmacol 80:2002–2008

    CAS  PubMed  Google Scholar 

  27. Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 25:154–159

    CAS  PubMed  Google Scholar 

  28. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    CAS  PubMed Central  PubMed  Google Scholar 

  29. McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system's response to infectious agents influences behavior. J Exp Biol 216:84–98

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Gibney SM, Drexhage HA (2013) Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J Neuroimmune Pharmacol 8(4):900–920 [Epub ahead of print]

    PubMed  Google Scholar 

  31. Onore C, Careaga M, Ashwood P (2012) The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 26:383–392

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Altamura AC, Pozzoli S, Fiorentini A, Dell'osso B (2013) Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Prog Neuropsychopharmacol Biol Psychiatry 42:63–70

    CAS  PubMed  Google Scholar 

  33. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 246C:199–229

    Google Scholar 

  34. de Theije CG, Wu J, da Silva SL, Kamphuis PJ, Garssen J, Korte SM, Kraneveld AD (2011) Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 668:S70–S80

    PubMed  Google Scholar 

  35. Silverman MN, Sternberg EM (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55–63

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Wiegant DA, Kraneveld AD, Blalock JE (2011) Neuroimmunoendocrinology. In: Nijkamp FP, Parnham MJ (eds) Principles of immunopharmacology, 3rd edn. Switzerland, Springer Basel AG

    Google Scholar 

  37. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37:137–162

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    CAS  PubMed  Google Scholar 

  39. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    CAS  PubMed  Google Scholar 

  40. Capuron L, Ravaud A, Miller AH, Dantzer R (2004) Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun 18:205–213

    CAS  PubMed  Google Scholar 

  41. Heinze S, Egberts F, Rotzer S, Volkenandt M, Tilgen W, Linse R, Boettjer J, Vogt T, Spieth K, Eigentler T, Brockmeyer NH, Hinzpeter A, Hauschild A, Schaefer M (2010) Depressive mood changes and psychiatric symptoms during 12-month low-dose interferon-alpha treatment in patients with malignant melanoma: results from the multicenter DeCOG trial. J Immunother 33:106–114

    CAS  PubMed  Google Scholar 

  42. Hayley S, Scharf J, Anisman H (2013) Central administration of murine interferon-α induces depressive-like behavioral, brain cytokine and neurochemical alterations in mice: A mini-review and original experiments. Brain Behav Immun 31:115–127

    CAS  PubMed  Google Scholar 

  43. Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, Heim CM (2006) Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 163:1630–1633

    PubMed  Google Scholar 

  44. Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, van Veen T, Willemsen G, DeRijk RH, de Geus EJ, Hoogendijk WJ, Sullivan PF, Penninx BW, Boomsma DI, Snieder H, Nolen WA (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 16:516–532

    CAS  PubMed  Google Scholar 

  45. Bufalino C, Hepgul N, Aguglia E, Pariante CM (2013) The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun 31:31–47

    CAS  PubMed  Google Scholar 

  46. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306

    CAS  PubMed  Google Scholar 

  47. Albert PR, Benkelfat C, Descarries L (2012) The neurobiology of depression—revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 367:2378–2381

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Lee KM, Kim YK (2006) The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 6:1298–1304

    CAS  PubMed  Google Scholar 

  50. Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O, Sanisoglu SY, Yesilova Z, Ozmenler N, Ozsahin A, Sengul A (2007) Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007:76396–76402

    PubMed Central  PubMed  Google Scholar 

  51. Mossner R, Heils A, Stober G, Okladnova O, Daniel S, Lesch KP (1998) Enhancement of serotonin transporter function by tumor necrosis factor alpha but not by interleukin-6. Neurochem Int 33:251–254

    CAS  PubMed  Google Scholar 

  52. Tsao CW, Lin YS, Cheng JT, Lin CF, Wu HT, Wu SR, Tsai WH (2008) Interferon-alpha-induced serotonin uptake in Jurkat T cells via mitogen-activated protein kinase and transcriptional regulation of the serotonin transporter. J Psychopharmacol 22:753–760

    CAS  PubMed  Google Scholar 

  53. Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31:2121–2131

    CAS  PubMed  Google Scholar 

  54. Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA (2010) Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35:2510–2520

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Borowski T, Kokkinidis L, Merali Z, Anisman H (1998) Lipopolysaccharide, central in vivo biogenic amine variations, and anhedonia. Neuroreport 9:3797–3802

    CAS  PubMed  Google Scholar 

  56. Prins J, van Heesch F, de Haan L, Krajnc AM, Kenny PJ, Olivier B, Kraneveld AD, Korte SM (2011) Lipolysaccharide-induced changes in brain stimulation reward: anhedonia or sickness behaviour? Eur Neuropsychopharmacol 21:S39–S40

    Google Scholar 

  57. van Heesch F, Prins J, Konsman JP, Westphal KG, Olivier B, Kraneveld AD, Korte SM (2013) Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study. Brain Behav Immun 29:98–103

    PubMed  Google Scholar 

  58. Van Heesch F, Prins J, Westphal KGC, Korte-Bouws GAH, Olivier B, Kraneveld AD, Korte SM (2013) Pro-inflammatory cytokines induce anhedonia in mice and increase monoamine transporter activity in the nucleus accumbens. Eur Neuropsychopharmacol 23:S47–S48

    Google Scholar 

  59. Prins J, Kenny PJ, Doomernik I, Schreiber R, Olivier B, Korte SM (2012) The triple reuptake inhibitor DOV 216,303 induces long-lasting enhancement of brain reward activity as measured by intracranial self-stimulation in rats. Eur J Pharmacol 693:51–56

    CAS  PubMed  Google Scholar 

  60. Bayramgürler D, Karson A, Ozer C, Utkan T (2013) Effects of long-term etanercept treatment on anxiety- and depression-like neurobehaviors in rats. Physiol Behav 119C:145–148

    Google Scholar 

  61. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70:31–41

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13:717–728

    CAS  PubMed  Google Scholar 

  63. Milaneschi Y, Corsi AM, Penninx BW, Bandinelli S, Guralnik JM, Ferrucci L (2009) Interleukin-1 receptor antagonist and incident depressive symptoms over 6 years in older persons: the InCHIANTI study. Biol Psychiatry 65:973–978

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Maes M, Song C, Yirmiya R (2012) Targeting IL-1 in depression. Expert Opin Ther Targets 16:1097–1112

    CAS  PubMed  Google Scholar 

  65. Grassi-Oliveira R, Bauer ME, Pezzi JC, Teixeira AL, Brietzke E (2011) Interleukin-6 and verbal memory in recurrent major depressive disorder. Neuro Endocrinol Lett 32:540–544

    CAS  PubMed  Google Scholar 

  66. Townes SA, Furst DE, Thenkondar A (2012) The impact of tocilizumab on physical function and quality of life in patients with rheumatoid arthritis: a systematic literature review and interpretation. Open Access Rheumatol: Res Rev 4:87–92

    CAS  Google Scholar 

  67. An Observational Study on Fatigue in Patients With Rheumatoid Arthritis Treated With RoActemra/Actemra (Tocilizumab). www.ClinicalTrail.gov NCT01667458

  68. Gao HM, Hong JS, Zhang W, Liu B (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    CAS  PubMed  Google Scholar 

  69. de Paiva VN, Lima SN, Fernandes MM, Soncini R, Andrade CA, Giusti-Paiva A (2010) Prostaglandins mediate depressive-like behaviour induced by endotoxin in mice. Behav Brain Res 215:146–151

    PubMed  Google Scholar 

  70. Teeling JL, Cunningham C, Newman TA, Perry VH (2010) The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1. Brain Behav Immun 24:409–419

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N (2006) Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot openlabel study. Int Clin Psychopharmacol 21:227–231

    PubMed  Google Scholar 

  72. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of adouble-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11:680–684

    CAS  PubMed  Google Scholar 

  73. Jazayeri S, Keshavarz SA, Tehrani-Doost M, Djalali M, Hosseini M, Amini H, Chamari M, Djazayery A (2010) Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1beta and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res 178:112–115

    CAS  PubMed  Google Scholar 

  74. Lin PY, Su KP (2007) A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry 68:1056–1061

    CAS  PubMed  Google Scholar 

  75. Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutiérrez C, Micheli FE, Benarroch EE (2013) Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 260(5):1332–1338

    CAS  PubMed  Google Scholar 

  76. Idiaquez J, Roman GC (2011) Autonomic dysfunction in neurodegenerative dementias. J Neurol Sci 305(1–2):22–27

    PubMed  Google Scholar 

  77. Wu JH, Guo Z, Kumar S, Lapuerta P (2011) Incidence of serious upper and lower gastrointestinal events in older adults with and without Alzheimer’s Disease. JAGS 59(11):2053–2063

    Google Scholar 

  78. Masand P, Kaplan D, Gupta S, Bhandary A, Nasra G, Kline M et al (1995) Major depression and irritable bowel syndrome: is there a relationship? J Clin Psychiatry 56(8):363–367

    CAS  PubMed  Google Scholar 

  79. Haug T, Mykletun A, Dahl A (2002) Are anxiety and depression related to gastrointestinal symptoms in the general population? Scand J Gastroenterol 37(3):294–298

    PubMed  Google Scholar 

  80. Härter M, Conway K, Merikangas K (2003) Associations between anxiety disorders and physical illness. Eur Arch Psychiatry Clin Neurosci 253(6):313–320

    PubMed  Google Scholar 

  81. Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  82. Anand R, Kaushal A, Wani WY, Gill KD (2012) Road to Alzheimer’s disease: the pathomechanism underlying. Pathobiology: J Immunopathol, Molecular Cell Biol 79(2):55–71

    CAS  Google Scholar 

  83. Chopra K, Kumar B, Kuhad A (2011) Pathobiological targets of depression. Expert Opin Ther Targets 15(4):379–400

    PubMed  Google Scholar 

  84. Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219–225

    CAS  PubMed  Google Scholar 

  85. Wollen KA (2010) Alzheimer’s disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev: J Clin Ther 15(3):223–244

    Google Scholar 

  86. Kamphuis PJ, Wurtman RJ (2009) Nutrition and Alzheimer’s disease: pre-clinical concepts. Eur J Neurol 16:12–18

    PubMed  Google Scholar 

  87. Borre YE, Panagaki T, Koelink PJ, Morgan ME, Hendriksen H, Garssen J, Kraneveld AD, Olivier B, Oosting RS (2014) Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology 79:738–749

    CAS  PubMed  Google Scholar 

  88. American-Psychiatric-Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn., DSM-IV. American Psychiatric Press, Washington DC

    Google Scholar 

  89. Morgan JT, Chana G, Pardo GA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376

    PubMed  Google Scholar 

  90. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, Allman JM (2012) Microglia in the cerebral cortex in autism. J Autism Dev Disord 42:2569–2584

    PubMed  Google Scholar 

  91. Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206–210

    CAS  PubMed  Google Scholar 

  92. Ratnayake U, Quinn TA, Castillo-Melendez C, Dickinson H, Walker DW (2012) Behaviour and hippocampus-specific changes in spiny mouse neonates after treatment of the mother with the viral-mimetic Poly I:C at mid-pregnancy. Brain Behav Immun 26:1288–1299

    CAS  PubMed  Google Scholar 

  93. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–109

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    CAS  PubMed  Google Scholar 

  95. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, Altaye M, Wills-Karp M (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172:198–205

    CAS  PubMed  Google Scholar 

  97. Jyonouchi H, Geng L, Ruby A, Reddy C, Zimmerman-Bier B (2005) Evaluation of an association between gastrointestinal symptoms and cytokine production against common dietary proteins in children with autism spectrum disorders. J Pediatr 146:605–610

    CAS  PubMed  Google Scholar 

  98. Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P (2009) Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 23:124–133

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Vojdani A, Mumper E, Granpeesheh D, Mielke L, Traver D, Bock K, Hirani K, Neubrander J, Woeller KN, O'Hara N, Usman A, Schneider C, Hebroni F, Berookhim J, McCandless J (2008) Low natural killer cell cytotoxic activity in autism: The role of glutathione, IL-2 and IL-15. J Immunol 205:148–154

    CAS  Google Scholar 

  100. Heuer L, Ashwood P, Schauer J, Goines P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J (2008) Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res 1:275–283

    PubMed Central  PubMed  Google Scholar 

  101. Lucarelli S, Frediani T, Zingoni AM, Ferruzzi F, Giardini O, Quintieri F, Barbato M, D'Eufemia P, Cardi E (1995) Food allergy and infantile autism. Panminerva Med 37:137–141

    CAS  PubMed  Google Scholar 

  102. Croonenberghs J, Wauters A, Devreese K, Verkerk R, Scharpe S, Bosmans E, Egyed B, Deboutte D, Maes M (2002) Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol Med 32:1457–1463

    CAS  PubMed  Google Scholar 

  103. Manzardo AM, Henkhaus R, Dhillon S, Butler MG (2012) Plasma cytokine levels in children with autistic disorder and unrelated siblings. Int J Dev Neurosci 30:121–127

    CAS  PubMed  Google Scholar 

  104. Singh VK (1996) Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol 66:143–145

    CAS  PubMed  Google Scholar 

  105. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J (2011) Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 232:196–199

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Costa M, Brookes SJ, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47:15–19

    Google Scholar 

  108. Peeters B, Noens I, Philips EM, Kuppens S, Benninga MA (2013) Autism spectrum disorders in children with functional defecation disorders. J Pediatr 163(3):873–878. doi:10.1016/j.jpeds.2013.02.028

    PubMed  Google Scholar 

  109. Louis P (2012) Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig Dis Sci 57:1987–1989

    PubMed  Google Scholar 

  110. Schreck KA, Williams K (2006) Food preferences and factors influencing food selectivity for children with autism spectrum disorders. Res Dev Disabil 27:353–363

    PubMed  Google Scholar 

  111. Gorrindo P, Williams KC, Lee EB, Walker LS, McGrew SG, Levitt P (2012) Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. Autism Res 5:101–108

    PubMed Central  PubMed  Google Scholar 

  112. Mazurek MO, Vasa RA, Kalb LG, Kanne SM, Rosenberg D, Keefer A, Murray DS, Freedman B, Lowery LA (2012) Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol 41:165–176

    Google Scholar 

  113. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418–424

    PubMed  Google Scholar 

  114. Wang LW, Tancredi DJ, Thomas DW (2011) The prevalence of gastrointestinal problems in children across the United States with autism spectrum disorders from families with multiple affected members. J Dev Behav Pediatr 32:351–360

    PubMed  Google Scholar 

  115. Costa-Pinto FA, Basso AS (2012) Neural and behavioral correlates of food allergy. Chem Immonol Allergy 98:222–239

    CAS  Google Scholar 

  116. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    CAS  PubMed  Google Scholar 

  117. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:22–35

    PubMed Central  PubMed  Google Scholar 

  118. Theoharides TC (2013) Is a subtype of autism an allergy of the brain? Clin Ther 35:584–591

    CAS  PubMed  Google Scholar 

  119. Jyonouchi H (2009) Food allergy and autism spectrum disorders: is there a link? Curr Allergy Asthma Rep 9:194–201

    PubMed  Google Scholar 

  120. Meldrum SJ, D'Vaz N, Dunstan JA, Mori TA, Hird K, Simmer K, Prescott SL (2012) Allergic disease in the first year of life is associated with differences in subsequent neurodevelopment and behaviour. Early Hum Dev 88:567–573

    PubMed  Google Scholar 

  121. Afzal N, Murch S, Thirrupathy K, Berger L, Fagbemi A, Heuschkel R (2003) Constipation with acquired megarectum in children with autism. Pediatrics 112:939–942

    PubMed  Google Scholar 

  122. Millward C, Ferriter M, Calver S, Connell-Jones G (2008) Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst Rev 2:CD003498

    PubMed  Google Scholar 

  123. Whiteley P, Haracopos D, Knivsberg AM, Reichelt KL, Parlar S, Jacobsen J, Seim A, Pedersen L, Schondel M, Shattock P (2010) The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr Neurosci 13:87–100

    CAS  PubMed  Google Scholar 

  124. Reichelt KL, Knivsberg AM (2009) The possibility and probability of a gut-to-brain connection in autism. Ann Clin Psychiatry 21:205–211

    CAS  PubMed  Google Scholar 

  125. Iebba V, Aloi M, Civitelli F, Cucchiara S (2011) Gut microbiota and pediatric disease. Dig Dis 29:531–539

    PubMed  Google Scholar 

  126. Basso AS, Pinto FA, Russo M, Britto LR, de Sá-Rocha LC, Palermo Neto J (2003) Neural correlates of IgE-mediated food allergy. J Neuroimmunol 140:69–77

    CAS  PubMed  Google Scholar 

  127. Sutherland MA, Shome GP, Hulbert LE, Krebs N, Wachtel M, McGlone JJ (2009) Acute stress affects the physiology and behavior of allergic mice. Physiol Behav 98:281–287

    CAS  PubMed  Google Scholar 

  128. De Theije CMA, Hofman G, Korkeaviita J, Veening J, Dederen J, Korte SM, Olivier B, Garssen J, Kraneveld AD (2012) Neuropsychological changes in a Mouse model for cow’s milk allergy. J Neuroimmunol 253:57–58

    Google Scholar 

  129. de Kivit S, Morgan ME, Panagaki T, Kraneveld AD, Garssen J, Oosting R, Borre YE (2012) Allergy-induced cognitive abnormalities and neuroinflammation in an OVA-induced food allergy model are prevented by a dietary intervention. J Neuroimmunol 253:89

    Google Scholar 

  130. Mulle JG, Sharp WG, Cubells JF (2013) The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep 15:337–340

    PubMed Central  PubMed  Google Scholar 

  131. Critchfield JW, van Hemert S, Ash M, Mulder L, Ashwood P (2011) The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011:161358

    PubMed Central  PubMed  Google Scholar 

  132. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R (2013) Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8:e68322

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Azas-Braesco V, Bresson JL, Guarner F, Corthier G (2010) Not all lactic acid bacteria are probiotics, but some are. Br J Nutr 103:1079–1081

    Google Scholar 

  134. de Kivit S, Kraneveld AD, Garssen J, Willemsen LE (2011) Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components. Eur J Pharmacol 668:S124–S132

    PubMed  Google Scholar 

  135. Schouten B, van Esch BC, Hofman GA, van Doorn SA, Knol J, Nauta AJ, Garssen J, Willemsen LE, Knippels LM (2009) Cow milk allergy symptoms are reduced in mice fed dietary synbiotics during oral sensitization with whey. J Nutr 139:1398–1403

    CAS  PubMed  Google Scholar 

  136. van der Aa LB, Heymans HS, van Aalderen WM, Sillevis Smitt JH, Knol J, Ben Amor K, Goossens DA, Sprikkelman AB, Synbad Study Group (2010) Effect of a new synbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin Exp Allergy 40:795–804

    PubMed  Google Scholar 

  137. de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B, van Esch BC, Knol J, Sprikkelman AB, van der Aa LB, Knippels LM, Garssen J, van Kooyk Y, Willemsen LE (2012) Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 6:343–352

    Google Scholar 

  138. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    CAS  PubMed  Google Scholar 

  139. Lerman BJ, Hoffman EP, Sutherland ML, Bouri K, Hsu DK, Liu FT, Rothstein JD, Knoblach SM (2012) Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav 2:563–575

    PubMed Central  PubMed  Google Scholar 

  140. Sävman K, Heyes MP, Svedin P, Karlsson A (2013) Microglia/macrophage-derived inflammatory mediators galectin-3 and quinolinic acid are elevated in cerebrospinal fluid from newborn infants after birth asphyxia. Transl Stroke Res 4:228–235

    PubMed Central  PubMed  Google Scholar 

  141. Shin T (2013) The pleiotropic effects of galectin-3 in neuroinflammation: A review. Acta Histochem 115:407–411

    CAS  PubMed  Google Scholar 

  142. de Kivit S, Kraneveld AD, Knippels LM, van Kooyk Y, Garssen J, Willemsen LE (2013) Intestinal epithelium-derived galectin-9 is involved in the immunomodulating effects of nondigestible oligosaccharides. J Innate Immun 5(6):625–638

    PubMed  Google Scholar 

  143. Velasco S, Díez-Revuelta N, Hernández-Iglesias T, Kaltner H, André S, Gabius HJ, Abad-Rodríguez J (2013) Neuronal galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 125:49–62

    CAS  PubMed  Google Scholar 

  144. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, Wang Y, Elyaman W, Khoury SJ, Rabinovich GA (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Sakaguchi M, Okano H (2012) Neural stem cells, adult neurogenesis, and galectin-1: from bench to bedside. Dev Neurobiol 72:1059–1067

    CAS  PubMed  Google Scholar 

  146. Yoshida H, Imaizumi T, Kumagai M, Kimura K, Satoh C, Hanada N, Fujimoto K, Nishi N, Tanji K, Matsumiya T, Mori F, Cui XF, Tamo W, Shibata T, Takanashi S, Okumura K, Nakamura T, Wakabayashi K, Hirashima M, Sato Y, Satoh K (2001) Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport 12:3755–3758

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aletta D. Kraneveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Kraneveld, A.D., Garssen, J. (2014). Targeting (Gut)-Immune-Brain Axis with Pharmaceutical and Nutritional Concepts: Relevance for Mental and Neurological Disorders. In: Folkerts, G., Garssen, J. (eds) Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-06151-1_22

Download citation

Publish with us

Policies and ethics