Skip to main content

Individualized Tumor Therapy: Biomarkers and Possibilities for Targeted Therapy with Natural Products

  • Chapter
  • First Online:
  • 2068 Accesses

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 12))

Abstract

Although many tumors respond to chemotherapy, not all patients benefit from anticancer drugs. Tumors often develop resistance to drugs and concentrations sufficient to eradicate the cancer cannot be used due to the severe side effects of chemotherapy. In the present chapter, we give an overview of research on biomarkers with prognostic and predictive value and summarize our own efforts in this context. With a battery of biomarkers and corresponding synthetic and natural targeted drugs, it is likely that custom-tailored combination treatments will soon become a reality and that each individual cancer patient will be treated based on his or her individual molecular tumor architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duffy MJ (2005) Predictive markers in breast and other cancers: a review. Clin Chem 51:494–503

    CAS  PubMed  Google Scholar 

  2. Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552

    CAS  PubMed  Google Scholar 

  3. Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23:7350–7360

    CAS  PubMed  Google Scholar 

  4. Race RR, Sanger R (1975) Blood groups in man. Blackwell Scientific, Oxford

    Google Scholar 

  5. Ceppellini R, Curtoni ES, Mattiuz PL et al (1967) Genetics of leukocyte antigens: a family study of segregation and linkage. In: Curtoni ES, Mattiuz PL, Tosi RM (eds) Histocompatibility. Munksgaard, Copenhagen, p 149

    Google Scholar 

  6. Mourant AE (1954) The distribution of human blood groups. Blackwell Scientific, Oxford

    Google Scholar 

  7. Harris H (1966) Enzyme polymorphisms in man. Proc R Soc Lond B Biol Sci 164:298–310

    CAS  PubMed  Google Scholar 

  8. Salmon SE, Hamburger AW, Soehnlein B, Durie BG, Alberts DS, Moon TE (1978) Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N Engl J Med 298:1321–1327

    CAS  PubMed  Google Scholar 

  9. Volm M, Drings P, Mattern J, Sonka J, Vogt-Moykopf I, Wayss K (1985) Prognostic significance of DNA patterns and resistance-predictive tests in non-small cell lung carcinoma. Cancer 56:1396–1403

    CAS  PubMed  Google Scholar 

  10. Efferth T, Konkimalla VB, Wang YF, Sauerbrey A, Meinhardt S, Zintl F, Mattern J, Volm M (2008) Prediction of broad spectrum resistance of tumors towards anticancer drugs. Clin Cancer Res 14:2405–2412

    CAS  PubMed  Google Scholar 

  11. Samson DJ, Seidenfeld J, Ziegler K, Aronson N (2004) Chemotherapy sensitivity and resistance assays: a systematic review. J Clin Oncol 22:3618–3630

    CAS  PubMed  Google Scholar 

  12. Cree IA, Kurbacher CM, Untch M, Sutherland LA, Hunter EM, Subedi AM et al (1996) Correlation of the clinical response to chemotherapy in breast cancer with ex vivo chemosensitivity. Anticancer Drugs 7:630–635

    CAS  PubMed  Google Scholar 

  13. Möllgård L, Tidefelt U, Sundman-Engberg B, Löfgren C, Paul C (2000) In vitro chemosensitivity testing in acute non lymphocytic leukemia using the bioluminescence ATP assay. Leuk Res 24:445–452

    PubMed  Google Scholar 

  14. Lau GI, Loo WT, Chow LW (2007) Neoadjuvant chemotherapy for breast cancer determined by chemosensitivity assay achieves better tumor response. Biomed Pharmacother 61:562–565

    CAS  PubMed  Google Scholar 

  15. Kerr DJ, Wheldon TE, Kerr AM, Kaye SB (1987) In vitro chemosensitivity testing using the multicellular tumor spheroid model. Cancer Drug Deliv 4:63–74

    CAS  PubMed  Google Scholar 

  16. Sakai S, Inamoto K, Liu Y, Tanaka S, Arii S, Taya M (2012) Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity. Cancer Sci 103:549–554

    CAS  PubMed  Google Scholar 

  17. Mestres P, Morguet A, Schmidt W, Kob A, Thedinga E (2006) A new method to assess drug sensitivity on breast tumor acute slices preparation. Ann N Y Acad Sci 1091:460–469

    CAS  PubMed  Google Scholar 

  18. Kubota T, Weisenthal L (2006) Chemotherapy sensitivity and resistance testing: to be “standard” or to be individualized, that is the question. Gastric Cancer 9:82–87

    CAS  PubMed  Google Scholar 

  19. Volm M, Koomägi R, Mattern J, Efferth T (2002) Protein expression profile of primary human squamous cell lung carcinomas indicative of the incidence of metastases. Clin Exp Metastasis 19(5):385–390

    CAS  PubMed  Google Scholar 

  20. Volm M, Koomägi R, Mattern J, Efferth T (2002) Protein expression profiles indicative for drug resistance of non-small cell lung cancer. Br J Cancer 87(3):251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Volm M, Koomägi R, Mattern J, Efferth T (2002) Expression profile of genes in non-small cell lung carcinomas from long-term surviving patients. Clin Cancer Res 8(6):1843–1848

    CAS  PubMed  Google Scholar 

  22. Beck WT, Grogan TM, Willmann CL, Cordon-Cardo C, Parham DM, Kuttesch JF, Andreeff M, Bates SE, Berard CW, Boyett JM, Brophy NA, Broxterman HJ, Chan HSL, Dalton WS, Dietel M, Fojo AT, Gascoyne RD, Head D, Houghton PJ, Srivastava DK, Lehnert M, Leith CP, Paietta E, Pavelic ZP, Rimza L, Roninson IB, Sikic BI, Twentyman PR, Warnke R, Weinstein R (1996) Methods to detect P-glycoprotein-associated multidrug resistance in patients’ tumors: consensus recommendations. Cancer Res 56:3010–3020

    CAS  PubMed  Google Scholar 

  23. Marie J-P, Huet S, Faussat A-M, Perrot J-Y, Chevillard S, Barbu V, Bayle V, Boutonnat J, Calvo F, Campos-Guyotat L, Colosetti P, Cazin J-L, de Cremoux P, Delvincourt C, Demur C, Drenou B, Fenneteau O, Feulliard J, Garnier-Suillerot A, Genne P, Gorisse M-C, Gosselin P, Jouault H, Lacave R, Le Calvez G, Leglise MC, Leonce S, Manfait M, Maynadie M, Merle-Beral H, Merlin J-L, Mousseau M, Morjani H, Picard F, Pinguet F, Poncelet P, Racadot E, Raphael M, Richard B, Rossi J-F, Schlegel N, Vielh P, Zhou D-C, Robert J (1997) Multicentric evaluation of the MDR phenotype in leukemia. Leukemia 11:1086–1094

    CAS  PubMed  Google Scholar 

  24. Efferth T (1999) Testing for tumor drug resistance in the age of molecular medicine. A contribution to the Debate Round-Table on Phenotypic and Genotypic Analyses of Multidrug Resistance (MDR) in Clinical Hospital Practice. Leukemia 13:1627–1629

    CAS  PubMed  Google Scholar 

  25. Mitelman F, Johansson B, Mandahl N, Mertens F (1997) Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 95:1–8

    CAS  PubMed  Google Scholar 

  26. Keen-Kim D, Nooraie F, Rao PN (2008) Cytogenetic biomarkers for human cancer. Front Biosci 13:5928–5949

    CAS  PubMed  Google Scholar 

  27. Grimwade D, Mrózek K (2011) Diagnostic and prognostic value of cytogenetics in acute myeloid leukemia. Hematol Oncol Clin North Am 25:1135–1161

    PubMed  Google Scholar 

  28. Gunawan B, Huber W, Holtrup M, von Heydebreck A, Efferth T, Poustka A, Ringert RH, Jakse G, Füzesi L (2001) Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res 61:7731–7738

    CAS  PubMed  Google Scholar 

  29. Efferth T, Verdorfer I, Miyachi H, Sauerbrey A, Drexler HG, Chitambar CR, Haber M, Gebhart E (2002) Genomic imbalances in drug-resistant T-cell acute lymphoblastic CEM leukemia cell lines. Blood Cells Mol Dis 29:1–13

    CAS  PubMed  Google Scholar 

  30. Gebhart E, Thoma K, Verdorfer I, Drexler HG, Efferth T (2002) Genomic imbalances in T-cell acute lymphoblastic leukemia cell lines. Int J Oncol 21:887–894

    CAS  PubMed  Google Scholar 

  31. Gebhart E, Ries J, Wiltfang J, Liehr T, Efferth T (2004) Genomic gain of the epidermal growth factor receptor harboring band 7p12 is part of a complex pattern of genomic imbalances in oral squamous cell carcinomas. Arch Med Res 35:385–394

    CAS  PubMed  Google Scholar 

  32. Kearsley JH, Furlong KL, Cooke RA, Waters MJ (1990) An immunohistochemical assessment of cellular proliferation markers in head and neck squamous cell cancers. Br J Cancer 61:821–827

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Konkimalla VB, Suhas VL, Chandra NR, Gebhart E, Efferth T (2007) Diagnosis and therapy of oral squamous cell carcinoma. Expert Rev Anticancer Ther 7:317–329

    CAS  PubMed  Google Scholar 

  34. Laimer K, Spizzo G, Gastl G, Obrist P, Brunhuber T, Fong D, Barbieri V, Jank S, Doppler W, Rasse M, Norer B (2007) High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncol 43:193–198

    CAS  PubMed  Google Scholar 

  35. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al (2001) International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    CAS  PubMed  Google Scholar 

  36. Risch N (2001) The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol Biomarkers Prev 10:733–741

    CAS  PubMed  Google Scholar 

  37. Robert J, Morvan VL, Smith D, Pourquier P, Bonnet J (2005) Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 54:171–196

    PubMed  Google Scholar 

  38. Mao X, Young BD, Lu YJ (2007) The application of single nucleotide polymorphism microarrays in cancer research. Curr Genomics 8:219–228

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9:576–586

    CAS  PubMed  Google Scholar 

  40. Lash TL, Rosenberg CL (2010) Evidence and practice regarding the role for CYP2D6 inhibition in decisions about tamoxifen therapy. J Clin Oncol 28:1273–1275

    CAS  PubMed  Google Scholar 

  41. Efferth T (2001) The human ATP-binding cassette transporter genes: from the bench to the bedside. Curr Mol Med 1:45–65

    CAS  PubMed  Google Scholar 

  42. Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262

    CAS  PubMed  Google Scholar 

  43. Brinkmann U (2002) Functional polymorphisms of the human multidrug resistance (MDR1) gene: correlation with P-glycoprotein expression and activity in vivo. Novartis Found Symp 243:207–210; discussion 210–212, 231–235

    CAS  PubMed  Google Scholar 

  44. Efferth T, Sauerbrey A, Steinbach D, Gebhart E, Drexler HG, Miyachi H, Chitambar CR, Becker CM, Zintl F, Humeny A (2003) Analysis of single nucleotide polymorphism C3435T of the multidrug resistance gene MDR1 in acute lymphoblastic leukemia. Int J Oncol 23:509–517

    CAS  PubMed  Google Scholar 

  45. Humeny A, Rödel F, Rödel C, Sauer R, Füzesi L, Becker C, Efferth T (2003) MDR1 single nucleotide polymorphism C3435T in normal colorectal tissue and colorectal carcinomas detected by MALDI-TOF mass spectrometry. Anticancer Res 23:2735–2740

    CAS  PubMed  Google Scholar 

  46. Jamroziak K, Robak T (2008) Do polymorphisms in ABC transporter genes influence risk of childhood acute lymphoblastic leukemia? Leuk Res 32:1173–1175

    CAS  PubMed  Google Scholar 

  47. Maeda K, Sugiyama Y (2008) Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 23:223–235

    CAS  PubMed  Google Scholar 

  48. Yan PS, Efferth T, Chen HL, Lin J, Rödel F, Fuzesi L, Huang TH (2002) Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods 27:162–169

    CAS  PubMed  Google Scholar 

  49. Hughes LA, Khalid-de Bakker CA, Smits KM, van den Brandt PA, Jonkers D, Ahuja N, Herman JG, Weijenberg MP, van Engeland M (2012) The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta 1825:77–85

    CAS  PubMed  Google Scholar 

  50. Dahlin AM, Palmqvist R, Henriksson ML, Jacobsson M, Eklöf V, Rutegård J, Oberg A, Van Guelpen BR (2010) The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res 16:1845–1855

    CAS  PubMed  Google Scholar 

  51. Jover R, Nguyen TP, Pérez-Carbonell L, Zapater P, Payá A, Alenda C et al (2011) 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology 140:1174–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Van Rijnsoever M, Elsaleh H, Joseph D, McCaul K, Iacopetta B (2003) CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin Cancer Res 9:2898–2903

    PubMed  Google Scholar 

  53. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143

    CAS  PubMed  Google Scholar 

  54. Downing JR (2003) Acute leukemia: subtype discovery and prediction of outcome by gene expression profiling. Verh Dtsch Ges Pathol 87:66–71

    CAS  PubMed  Google Scholar 

  55. Bertucci F, Finetti P, Birnbaum D (2012) Basal breast cancer: a complex and deadly molecular subtype. Curr Mol Med 12:96–110

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Masuda S (2012) Breast cancer pathology: the impact of molecular taxonomy on morphological taxonomy. Pathol Int 62:295–302

    CAS  PubMed  Google Scholar 

  57. Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, Remacle J (2004) Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res 64:8987–8993

    CAS  PubMed  Google Scholar 

  58. Steinbach D, Gillet JP, Sauerbrey A, Gruhn B, Dawczynski K, Bertholet V, de Longueville F, Zintl F, Remacle J, Efferth T (2006) ABCA3 as a possible cause of drug resistance in childhood acute myeloid leukemia. Clin Cancer Res 12:4357–4363

    CAS  PubMed  Google Scholar 

  59. Efferth T, Gillet JP, Sauerbrey A, Zintl F, Bertholet V, de Longueville F, Remacle J, Steinbach D (2006) Expression profiling of ATP-binding cassette transporters in childhood T-cell acute lymphoblastic leukemia. Mol Cancer Ther 5:1986–1994

    CAS  PubMed  Google Scholar 

  60. Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, Tatangelo F, Britten CM, Kreiter S, Chouchane L, Delrio P, Arndt H, Asslaber M, Maio M, Masucci GV, Mihm M, Vidal-Vanaclocha F, Allison JP, Gnjatic S, Hakansson L, Huber C, Singh-Jasuja H, Ottensmeier C, Zwierzina H, Laghi L, Grizzi F, Ohashi PS, Shaw PA, Clarke BA, Wouters BG, Kawakami Y, Hazama S, Okuno K, Wang E, O’Donnell-Tormey J, Lagorce C, Pawelec G, Nishimura MI, Hawkins R, Lapointe R, Lundqvist A, Khleif SN, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Palmqvist R, Nagtegaal ID, Wang Y, D’Arrigo C, Kopetz S, Sinicrope FA, Trinchieri G, Gajewski TF, Ascierto PA, Fox BA (2012) Cancer classification using the Immunoscore: a worldwide task force. J Transl Med 10:205

    PubMed Central  PubMed  Google Scholar 

  61. Allred DC, Carlson RW, Berry DA, Burstein HJ, Edge SB, Goldstein LJ, Gown A, Hammond ME, Iglehart JD, Moench S, Pierce LJ, Ravdin P, Schnitt SJ, Wolff AC (2009) NCCN Task Force Report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Canc Netw 7(Suppl 6):S1–S21

    CAS  PubMed  Google Scholar 

  62. Idikio HA (2009) Immunohistochemistry in diagnostic surgical pathology: contributions of protein life-cycle, use of evidence-based methods and data normalization on interpretation of immunohistochemical stains. Int J Clin Exp Pathol 3:169–176

    PubMed Central  PubMed  Google Scholar 

  63. Baskın Y, Yiğitbaşı T (2010) Clinical proteomics of breast cancer. Curr Genomics 11:528–536

    PubMed Central  PubMed  Google Scholar 

  64. Beketic-Oreskovic L, Maric P, Ozretic P, Oreskovic D, Ajdukovic M, Levanat S (2012) Assessing the clinical significance of tumor markers in common neoplasms. Front Biosci (Elite Ed) 4:2558–2578

    Google Scholar 

  65. Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A (2013) Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. Mass Spectrom Rev 32:129–142

    CAS  PubMed  Google Scholar 

  66. de Wit M, Fijneman RJ, Verheul HM, Meijer GA, Jimenez CR (2013) Proteomics in colorectal cancer translational research: biomarker discovery for clinical applications. Clin Biochem 46(6):466–479

    PubMed  Google Scholar 

  67. Bentzen SM, Buffa FM, Wilson GD (2008) Multiple biomarker tissue microarrays: bioinformatics and practical approaches. Cancer Metastasis Rev 27:481–494

    CAS  PubMed  Google Scholar 

  68. Matsuda KM, Chung JY, Hewitt SM (2010) Histo-proteomic profiling of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 7:227–237

    CAS  PubMed  Google Scholar 

  69. Cai Z, Chiu JF, He QY (2004) Application of proteomics in the study of tumor metastasis. Genomics Proteomics Bioinformatics 2:152–166

    CAS  PubMed  Google Scholar 

  70. Everley PA, Zetter BR (2005) Proteomics in tumor progression and metastasis. Ann N Y Acad Sci 1059:1–10

    CAS  PubMed  Google Scholar 

  71. Pardo M, Dwek RA, Zitzmann N (2007) Proteomics in uveal melanoma research: opportunities and challenges in biomarker discovery. Expert Rev Proteomics 4:273–286

    CAS  PubMed  Google Scholar 

  72. Goodison S, Urquidi V (2008) Breast tumor metastasis: analysis via proteomic profiling. Expert Rev Proteomics 5:457–467

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Nuyten DS, van de Vijver MJ (2008) Using microarray analysis as a prognostic and predictive tool in oncology: focus on breast cancer and normal tissue toxicity. Semin Radiat Oncol 18:105–114

    PubMed  Google Scholar 

  74. Kaelin WG (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698

    CAS  PubMed  Google Scholar 

  75. Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26:3785–3790

    CAS  PubMed  Google Scholar 

  77. Chalmers AJ, Lakshman M, Chan N, Bristow RG (2010) Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets. Semin Radiat Oncol 20:274–281

    PubMed  Google Scholar 

  78. Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, Mao L, Herath J, Jenkins R, Westra W et al (1995) Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet 11:210–212

    CAS  PubMed  Google Scholar 

  79. Nobori T, Takabayashi K, Tran P, Orvis L, Batova A, Yu AL, Carson DA (1996) Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. Proc Natl Acad Sci U S A 93:6203–6208

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737

    CAS  PubMed  Google Scholar 

  81. Kamatani N, Nelson-Rees WA, Carson DA (1981) Selective killing of human malignant cell lines deficient in methylthioadenosine phosphorylase, a purine metabolic enzyme. Proc Natl Acad Sci U S A 78:1219–1223

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Efferth T, Miyachi H, Drexler HG, Gebhart E (2002) Methylthioadenosine phosphorylase as target for chemoselective treatment of T-cell acute lymphoblastic leukemic cells. Blood Cells Mol Dis 28:47–56

    PubMed  Google Scholar 

  83. Efferth T, Gebhart E, Ross DD, Sauerbrey A (2003) Identification of gene expression profiles predicting tumor cell response to L-alanosine. Biochem Pharmacol 66:613–621

    CAS  PubMed  Google Scholar 

  84. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–1972

    CAS  PubMed  Google Scholar 

  85. Ford JM, Hait WN (1993) Pharmacologic circumvention of multidrug resistance. Cytotechnology 12:171–212

    CAS  PubMed  Google Scholar 

  86. Volm M, Pommerenke EW, Efferth T, Löhrke H, Mattern J (1991) Circumvention of multi-drug resistance in human kidney and kidney carcinoma in vitro. Cancer 67:2484–2489

    CAS  PubMed  Google Scholar 

  87. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    CAS  PubMed  Google Scholar 

  88. Eichhorn T, Efferth T (2012) P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. J Ethnopharmacol 141:557–570

    CAS  PubMed  Google Scholar 

  89. Efferth T, Davey M, Olbrich A, Rücker G, Gebhart E, Davey R (2002) Activity of drugs from traditional Chinese medicine toward sensitive and MDR1- or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells. Blood Cells Mol Dis 28:160–168

    PubMed  Google Scholar 

  90. Adams M, Mahringer A, Kunert O, Fricker G, Efferth T, Bauer R (2007) Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese herb Evodia rutaecarpa. Planta Med 73:1554–1557

    CAS  PubMed  Google Scholar 

  91. Adams M, Mahringer A, Bauer R, Fricker G, Efferth T (2007) In vitro cytotoxicity and P-glycoprotein modulating effects of geranylated furocoumarins from Tetradium daniellii. Planta Med 73:1475–1478

    CAS  PubMed  Google Scholar 

  92. Mahringer A, Karamustafa S, Klotz D, Kahl S, Konkimalla VB, Wang Y, Wang J, Liu HY, Boechzelt H, Hao X, Bauer R, Fricker G, Efferth T (2010) Inhibition of P-glycoprotein at the blood-brain barrier by phytochemicals derived from traditional Chinese medicine. Cancer Genomics Proteomics 7:191–205

    CAS  PubMed  Google Scholar 

  93. Mahringer A, Ardjomand-Woelkart K, Bauer R, Fricker G, Efferth T (2013) Alkamides from Echinacea angustifolia interact with P-glycoprotein of primary brain capillary endothelial cells isolated from porcine brain blood vessels. Planta Med 79(3–4):214–218

    CAS  PubMed  Google Scholar 

  94. Efferth T, Kahl S, Paulus K, Adams M, Rauh R, Boechzelt H, Hao X, Kaina B, Bauer R (2008) Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and Chinese materia medica with activity against tumor cells. Mol Cancer Ther 7:152–161

    CAS  PubMed  Google Scholar 

  95. Kuete V, Efferth T (2010) Cameroonian medicinal plants: pharmacology and derived natural products. Front Pharmacol 1:123

    PubMed Central  PubMed  Google Scholar 

  96. Kuete V, Krusche B, Youns M, Voukeng I, Fankam AG, Tankeo S, Lacmata S, Efferth T (2011) Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J Ethnopharmacol 134:803–812

    PubMed  Google Scholar 

  97. Kuete V, Efferth T (2011) Pharmacogenomics of Cameroonian traditional herbal medicine for cancer therapy. J Ethnopharmacol 137:752–766

    PubMed  Google Scholar 

  98. Kuete V, Wiench B, Hegazy ME, Mohamed TA, Fankam AG, Shahat AA, Efferth T (2012) Antibacterial activity and cytotoxicity of selected Egyptian medicinal plants. Planta Med 78:193–199

    CAS  PubMed  Google Scholar 

  99. Kuete V, Wabo HK, Eyong KO, Feussi MT, Wiench B, Krusche B, Tane P, Folefoc GN, Efferth T (2011) Anticancer activities of six selected natural compounds of some Cameroonian medicinal plants. PLoS One 6:e21762

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kuete V, Ngameni B, Wiench B, Krusche B, Horwedel C, Ngadjui BT, Efferth T (2011) Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med 77:1984–1989

    CAS  PubMed  Google Scholar 

  101. Kuete V, Eichhorn T, Wiench B, Krusche B, Efferth T (2012) Cytotoxicity, anti-angiogenic, apoptotic effects and transcript profiling of a naturally occurring naphthyl butenone, guieranone A. Cell Div 7:16

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Kuete V, Tchakam PD, Wiench B, Ngameni B, Wabo HK, Tala MF, Moungang ML, Ngadjui BT, Murayama T, Efferth T (2013) Cytotoxicity and modes of action of four naturally occurring benzophenones: 2,2’,5,6’-tetrahydroxybenzophenone, guttiferone E, isogarcinol and isoxanthochymol. Phytomedicine 20(6):528–536

    CAS  PubMed  Google Scholar 

  103. Hutchinson DJ (1963) Cross resistance and collateral sensitivity studies in cancer chemotherapy. Adv Cancer Res 7:235–250

    Google Scholar 

  104. Bech-Hansen NT, Till JE, Ling V (1976) Pleiotropic phenotype of colchicine-resistant CHO cells: cross-resistance and collateral sensitivity. J Cell Physiol 88:23–31

    CAS  PubMed  Google Scholar 

  105. Szybalski W, Bryson V (1952) Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol 64:489–499

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Rank GH, Robertson AJ, Phillips KL (1975) Modification and inheritance of pleiotropic cross resistance and collateral sensitivity in Saccharomyces cerevisiae. Genetics 3:783–793

    PubMed  Google Scholar 

  107. Hall MD, Salam NK, Hellawell JL, Fales HM, Kensler CB, Ludwig JA, Szakács G, Hibbs DE, Gottesman MM (2012) Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells. J Med Chem 52:3191–3204

    Google Scholar 

  108. Pluchino KM, Hall MD, Goldsborough AS, Callaghan R, Gottesman MM (2012) Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist Updat 15:98–105

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Wang K, Yamamoto H, Chin JR, Werb Z, Vu TH (2004) Epidermal growth factor receptor-deficient mice have delayed primary endochondral ossification because of defective osteoclast recruitment. J Biol Chem 279:53848–53856

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Perea S, Hidalgo M (2004) Predictors of sensitivity and resistance to epidermal growth factor receptor inhibitors. Clin Lung Cancer 6(Suppl 1):S30–S34

    CAS  PubMed  Google Scholar 

  111. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Jänne PA (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462:1070–1074

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Konkimalla VB, Efferth T (2010) Inhibition of epidermal growth factor receptor over-expressing cancer cells by the aphorphine-type isoquinoline alkaloid, dicentrine. Biochem Pharmacol 79:1092–1099

    CAS  PubMed  Google Scholar 

  113. Konkimalla VB, Efferth T (2010) Inhibition of epidermal growth factor receptor-overexpressing cancer cells by camptothecin, 20-(N, N-diethyl) glycinate. Biochem Pharmacol 80:39–49

    CAS  PubMed  Google Scholar 

  114. Konkimalla VB, McCubrey JA, Efferth T (2009) The role of downstream signaling pathways of the epidermal growth factor receptor for Artesunate’s activity in cancer cells. Curr Cancer Drug Targets 9:72–80

    CAS  PubMed  Google Scholar 

  115. Efferth T, Ramirez T, Gebhart E, Halatsch ME (2004) Combination treatment of glioblastoma multiforme cell lines with the anti-malarial artesunate and the epidermal growth factor receptor tyrosine kinase inhibitor OSI-774. Biochem Pharmacol 67:1689–1700

    CAS  PubMed  Google Scholar 

  116. Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, Gemmill RM, Drabkin HA, Franklin WA (2002) High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol 20:2417–2428

    CAS  PubMed  Google Scholar 

  117. Rich JN, Hans C, Jones B, Iversen ES, McLendon RE, Rasheed BK, Dobra A, Dressman HK, Bigner DD, Nevins JR, West M (2005) Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res 65:4051–4058

    CAS  PubMed  Google Scholar 

  118. Crijns AP, Duiker EW, de Jong S, Willemse PH, van der Zee AG, de Vries EG (2006) Molecular prognostic markers in ovarian cancer: toward patient-tailored therapy. Int J Gynecol Cancer 16(Suppl 1):152–165

    PubMed  Google Scholar 

  119. Seigneuric R, Starmans MH, Fung G, Krishnapuram B, Nuyten DS, van Erk A, Magagnin MG, Rouschop KM, Krishnan S, Rao RB, Evelo CT, Begg AC, Wouters BG, Lambin P (2007) Impact of supervised gene signatures of early hypoxia on patient survival. Radiother Oncol 83:374–382

    CAS  PubMed  Google Scholar 

  120. Tan BK, Tan LK, Yu K, Tan PH, Lee M, Sii LH, Wong CY, Ho GH, Yeo AW, Chow PK, Koong HN, Yong WS, Lim DT, Ooi LL, Soo KC, Tan P (2008) Clinical validation of a customized multiple signature microarray for breast cancer. Clin Cancer Res 14:461–469

    CAS  PubMed  Google Scholar 

  121. Chanrion M, Negre V, Fontaine H, Salvetat N, Bibeau F, Mac Grogan G, Mauriac L, Katsaros D, Molina F, Theillet C, Darbon JM (2008) A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res 14:1744–1752

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38:698–707

    CAS  PubMed  Google Scholar 

  123. Schneider JG, Khalil DN (2012) Why does Oncotype DX recurrence score reduce adjuvant chemotherapy use? Breast Cancer Res Treat 134:1125–1132

    CAS  PubMed  Google Scholar 

  124. Manjili MH, Najarian K, Wang XY (2012) Signatures of tumor-immune interactions as biomarkers for breast cancer prognosis. Future Oncol 8:703–711

    CAS  PubMed  Google Scholar 

  125. Wooster R (2000) Cancer classification with DNA microarrays is less more? Trends Genet 16:327–329

    CAS  PubMed  Google Scholar 

  126. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Google Scholar 

  127. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Efferth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Efferth, T. (2014). Individualized Tumor Therapy: Biomarkers and Possibilities for Targeted Therapy with Natural Products. In: Folkerts, G., Garssen, J. (eds) Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-06151-1_14

Download citation

Publish with us

Policies and ethics