Skip to main content

Recent Developments in Treatment of Cachexia

  • Chapter
  • First Online:
Pharma-Nutrition

Abstract

The cachexia syndrome, present in severe diseases such as cancer, AIDS and COPD, typically displays metabolic abnormalities, such as glucose intolerance, fat depletion and muscle protein catabolism and is usually accompanied by anorexia and, naturally, weight loss. Inflammation is also a key feature in this situation. Nutritional strategies have proved to be insufficient to counteract it. In this chapter we review recent therapeutic approaches developed specifically for these wasting states. The importance of the right timing is stressed, in combination with different nutritional/metabolic/pharmacological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

AIDS:

Acquired immunodeficiency syndrome

CHF:

Chronic heart failure

MPA:

Medroxyprogesterone

IL-1:

Interleukin-1-b

IL-6:

Interleukin-6

TNF-α:

TNF-alpha

IFN-γ:

Interferon-gamma

IL-4:

Interleukin-4

IL-10:

Interleukin-10

IL-12:

Interleukin-12

IL-15:

Interleukin-15

MC4:

Melanocortin

COX:

Cyclooxygenase

PUFA:

n-3 Polyunsaturated fatty acids

EPA:

Eicosapentaenoic acid

EPO:

Erythropoietin

CRF2R:

Corticotropin releasing factor 2 receptor

SARM:

Selective androgen receptor modulator

GH:

Growth hormone

IGF-1:

Insulin-like growth factor-I

PIF:

Proteolysis-inducing factor

TGF-beta:

Transforming growth factor-beta

References

  1. Warren KL (1932) The inmediate cause of death in cancer. Am J Med Sci 184(1):3

    Google Scholar 

  2. Argiles JM, Alvarez B, Lopez­Soriano FJ (1997) The metabolic basis of cancer cachexia. Med Res Rev 17:477–498

    Article  CAS  PubMed  Google Scholar 

  3. Evans WJ, Morley JE, Argiles J et al (2008) Cachexia: a new definition. Clin Nutr 27:793–799

    Article  CAS  PubMed  Google Scholar 

  4. Tomiska M, Tomiskova M, Salajka F et al (2003) Palliative treatment of cancer anorexia with oral suspension of megestrol acetate. Neoplasma 50:227–233

    CAS  PubMed  Google Scholar 

  5. Busquets S, Serpe R, Sirisi S, Toledo M, Coutinho J, Martinez R, Orpí M, López-Soriano FJ, Argilés JM (2010) Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. Clin Nutr 29:733–737

    Article  CAS  PubMed  Google Scholar 

  6. Nagaya N, Kangawa K (2006) Therapeutic potential of ghrelin in the treatment of heart failure. Drugs 66:439–448

    Article  CAS  PubMed  Google Scholar 

  7. Garcia JM, Polvino WJ (2009) Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers. Growth Horm IGF Res 19:267–273

    Article  CAS  PubMed  Google Scholar 

  8. Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J, Courdier-Fruh I, Henneböhle M, Nordhoff S, Mondadori C (2009) Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 4:e4774.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dallmann R, Weyermann P, Anklin C, Boroff M, Bray-French K, Cardel B, Courdier-Fruh I, Deppe H, Dubach-Powell J, Erb M, Haefeli RH, Henneböhle M, Herzner H, Hufschmid M, Marks DL, Nordhoff S, Papp M, Rummey C, Santos G, Schärer F, Siendt H, Soeberdt M, Sumanovski LT, Terinek M, Mondadori C, Güven N, Feurer A (2011) The orally active melanocortin-4 receptor antagonist BL-6020/979: a promising candidate for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2:163–174

    Article  PubMed Central  PubMed  Google Scholar 

  10. Rossi-Fanelli F, Cangiano C (1991) Increased availability of tryptophan in brain as a common pathogenic mechanism for anorexia associated with different diseases. Nutrition 7:364–367

    CAS  PubMed  Google Scholar 

  11. Kardinal CG, Loprinzi CL, Schaid DJ et al (1990) A controlled trial of cyproheptadine in cancer patients with anorexia. Cancer 65:2657–2662

    Article  CAS  PubMed  Google Scholar 

  12. Couluris M, Mayer JL, Freyer DR, Sandler E, Xu P, Krischer JP (2008) The effect of cyproheptadine hydrochloride (periactin) and megestrol acetate (megace) on weight in children with cancer/treatment-related cachexia. J Pediatr Hematol Oncol 30:791–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173:699–703

    Article  CAS  PubMed  Google Scholar 

  14. Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM (2005) Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54:540–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA, Guttridge D, Rhoades C, Shah M, Criswell T, Caligiuri MA, Villalona-Calero MA (2006) Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol 24:1852–1859

    Article  CAS  PubMed  Google Scholar 

  16. Steffen BT, Lees SJ, Booth FW (2008) Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J Appl Physiol 105:1950–1958

    Article  CAS  PubMed  Google Scholar 

  17. Figueras M, Busquets S, Carbo N, Barreiro E, Almendro V, Argilés JM, López-Soriano FJ (2004) Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett 569:201–206

    Article  CAS  PubMed  Google Scholar 

  18. Busquets S, Figueras MT, Meijsing S, Carbó N, Quinn LS, Almendro V, Argilés JM, López-Soriano FJ (2005) Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. Int J Mol Med 16:471–476

    CAS  PubMed  Google Scholar 

  19. Homem-de-Bittencourt Júnior PI, Pontieri V, Curi R, Lopes OU (1989) Effects of aspirin-like drugs on Walker 256 tumor growth and cachexia in rats. Braz J Med Biol Res 22:1039–1042

    PubMed  Google Scholar 

  20. McCarthy DO, Daun JM (1993) The effects of cyclooxygenase inhibitors on tumor-induced anorexia in rats. Cancer 7:486–492

    Article  Google Scholar 

  21. Hussey HJ, Tisdale MJ (2000) Effect of the specific cyclooxygenase-2 inhibitor meloxicam on tumour growth and cachexia in a murine model. Int J Cancer 87:95–100

    Article  CAS  PubMed  Google Scholar 

  22. Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, Gouma DJ, Giacosa A, Van Gossum A, Bauer J, Barber MD, Aaronson NK, Voss AC, Tisdale MJ (2003) Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52:1479–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fearon KC, Barber MD, Moses AG, Ahmedzai SH, Taylor GS, Tisdale MJ, Murray GD (2006) Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J Clin Oncol 24:3401–3407

    Article  CAS  PubMed  Google Scholar 

  24. Dewey A, Baughan C, Dean T, Higgins B, Johnson I (2007) Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst Rev 24, CD004597

    Google Scholar 

  25. Read JA, Beale PJ, Volker DH, Smith N, Childs A, Clarke SJ (2007) Nutrition intervention using an eicosapentaenoic acid (EPA)-containing supplement in patients with advanced colorectal cancer. Effects on nutritional and inflammatory status: a phase II trial. Support Care Cancer 15:301–307

    Article  PubMed  Google Scholar 

  26. Ryan AM, Reynolds JV, Healy L, Byrne M, Moore J, Brannelly N, McHugh A, McCormack D, Flood P (2009) Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Ann Surg 249:355–363

    Article  PubMed  Google Scholar 

  27. Busquets S, Figueras MT, Fuster G, Almendro V, Moore-Carrasco R, Ametller E, Argilés JM, López-Soriano FJ (2004) Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res 64:6725–6731

    Article  CAS  PubMed  Google Scholar 

  28. Kanzaki M, Soda K, Gin PT, Kai T, Konishi F, Kawakami M (2005) Erythropoietin attenuates cachectic events and decreases production of interleukin-6, a cachexia-inducing cytokine. Cytokine 32:234–239

    Article  CAS  PubMed  Google Scholar 

  29. Lainscak M, Keber I, Anker SD (2006) Body composition changes in patients with systolic heart failure treated with beta blockers: a pilot study. Int J Cardiol 106:319–322

    Article  PubMed  Google Scholar 

  30. Storer TW, Woodhouse LJ, Sattler F, Singh AB, Schroeder ET, Beck K, Padero M, Mac P, Yarasheski KE, Geurts P, Willemsen A, Harms MK, Bhasin S (2005) A randomized, placebo-controlled trial of nandrolone decanoate in human immunodeficiency virus-infected men with mild to moderate weight loss with recombinant human growth hormone as active reference treatment. J Clin Endocrinol Metab 90:4474–4482

    Article  CAS  PubMed  Google Scholar 

  31. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2:153–161

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wolf RF, NgB WB, Burt M, Brennan MF (1994) Effect of growth hormone on tumor and host in an animal model. Ann Surg Oncol 1:314–320

    Article  CAS  PubMed  Google Scholar 

  33. Wolf RF, Pearlstone DB, Newman E, Heslin MJ, Gonenne A, Burt ME, Brennan MF (1992) Growth hormone and insulin reverse net whole body and skeletal muscle protein catabolism in cancer patients. Ann Surg 216:280–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. NgB WRF, Weksler B, Brennan MF, Burt M (1993) Growth hormone administration preserves lean body mass in sarcoma-bearing rats treated with doxorubicin. Cancer Res 53:5483–5486

    Google Scholar 

  35. O’Driscoll JG, Green DJ, Ireland M, Kerr D, Larbalestier RI (1997) Treatment of end-stage cardiac failure with growth hormone. Lancet 349:1068

    Article  PubMed  Google Scholar 

  36. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209:501–514

    Article  CAS  PubMed  Google Scholar 

  37. Argilés JM, Figueras M, Ametller E, Fuster G, Olivan M, de Oliveira CC, López-Soriano FJ, Isfort RJ, Busquets S (2008) Effects of CRF2R agonist on tumor growth and cachexia in mice implanted with Lewis lung carcinoma cells. Muscle Nerve 37:190–195

    Article  PubMed  Google Scholar 

  38. Penna F, Busquets S, Pin F, Toledo M, Baccino FM, López-Soriano FJ, Costelli P, Argilés JM (2011) Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. J Cachexia Sarcopenia Muscle 2:95–104

    Article  PubMed Central  PubMed  Google Scholar 

  39. Argilés JM, López-Soriano FJ, Stemmler B, Busquets S (2013) Latest developments in cachexia drug discovery: clinical trials. In: Argilés JM, Busquets S (eds) Cancer Cachexia e-book. Future Medicine Ltd, London

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Argilés .

Editor information

Editors and Affiliations

Key Terms and Definitions

Key Terms and Definitions

Cachexia:

Physical wasting associated with loss of body weight and muscle mass, and often associated to severe diseases.

Muscle wasting:

Loss of muscle mass caused either by disease or by lack of use, with corresponding decreases in strength and mobility.

Myostatin:

Growth differentiation factor involved in the regulation of muscle size, being a potent inhibitor of muscle growth since embryonic development and throughout life.

Ghrelin:

Peptide hormone produced by epithelial cells lining the fundus of the stomach and epsilon cells of the pancreas that is a stimulant of appetite and feeding, and also a stimulator of growth hormone secretion.

Cytokines:

Regulatory proteins mainly released by immune cells and that act as intercellular mediators in the generation of the immune response, although some of them also have important metabolic effects.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Argilés, J.M., López-Soriano, F.J., Stemmler, B., Busquets, S. (2014). Recent Developments in Treatment of Cachexia. In: Folkerts, G., Garssen, J. (eds) Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-06151-1_13

Download citation

Publish with us

Policies and ethics