Skip to main content

Some Considerations on Surface Condition of Solid in Computational Fluid-Structure Interaction

  • Chapter
  • First Online:
  • 1979 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 33))

Abstract

The surface condition of solid or structure is a serious issue in the numerical simulation of the Fluid Structure Interaction. The present paper describes an engineering model for calculating the FSI with the surface condition for the hydro-gel solid, which is employed to modify the wall shear stress at the interface between the fluid and the solid. Using the proposed model, we show some numerical results including the large scale parallel computing of water splash generated by a hydro-gel sphere diving into water, which is compared well with the experimental observation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Billah KY, Scanlan RH (1991) Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks. Am J Phys 59(2):118–124

    Article  Google Scholar 

  2. Davies JM (1949) The aerodynamics of golf balls. J Appl Phys 20(9):821–828

    Article  Google Scholar 

  3. Kodama Y, Kakugawa A, Takahashi T, Kawashima H (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow 21(5):582–588

    Article  Google Scholar 

  4. Étienne S, Pelletier D (2005) A general approach to sensitivity analysis of fluid-structure interactions. J fluids struct 21(2):169–186

    Article  Google Scholar 

  5. He T, Zhou D, Bao Y (2012) Combined interface boundary condition method for fluid-rigid body interaction. Comput Methods Appl Mech Eng 223:81–102

    Article  MathSciNet  Google Scholar 

  6. Pendergast DR, Mollendorf JC, Cuviello R, Termin AC (2006) Application of theoretical principles to swimsuit drag reduction. Sports Eng 9(2):65–76

    Article  Google Scholar 

  7. Moria H, Chowdhury H, Alam F, Subic A, Smits AJ, Jassim R, Bajaba NS (2010) Contribution of swimsuits to swimmer’s performance. Procedia Eng 2(2):2505–2510

    Article  Google Scholar 

  8. Fletcher NH (1976) Sound production by organ flue pipes. J Acoust Soc Am 60:926

    Article  MathSciNet  Google Scholar 

  9. Coltman JW (1968) Sounding mechanism of the flute and organ pipe. J Acoust Soc Am 44:983

    Article  Google Scholar 

  10. Tsuchida J, Fujisawa T, Yagawa G (2006) Direct numerical simulation of aerodynamic sounds by a compressible cfd scheme with node-by-node finite elements. Comput Methods Appl Mech Eng 195(13):1896–1910

    Article  MATH  MathSciNet  Google Scholar 

  11. Maruyama T (1999) Surface and inlet boundary conditions for the simulation of turbulent boundary layer over complex rough surfaces. J Wind Eng Ind Aerodyn 81(1):311–322

    Article  Google Scholar 

  12. Yabe T, Chinda K, Hiraishi T (2007) Computation of surface tension and contact angle and its application to water strider. Comput Fluids 36(1):184–190

    Article  MATH  Google Scholar 

  13. Kobayashi S, Watanabe R, Oiwa T, Morikawa H (2009) Computational study of micropropulsion mechanism in water modeled on flagellum with projecting mastigonemes. J Biomech Sci Eng 4(1):11–22

    Article  Google Scholar 

  14. Nomura K, Koshizuka S, Oka Y, Obata H (2001) Numerical analysis of droplet breakup behavior using particle method. J Nucl Sci Technol 38(12):1057–1064

    Article  Google Scholar 

  15. Caboussat A (2006) A numerical method for the simulation of free surface flows with surface tension. Comput Fluids 35(10):1205–1216

    Article  MATH  Google Scholar 

  16. Liu J, Koshizuka S, Oka Y (2005) A hybrid particle-mesh method for viscous, incompressible, multiphase flows. J Comput Phys 202(1):65–93

    Article  MATH  Google Scholar 

  17. Worthington AM (1882) On impact with a liquid surface. Proc R Soc Lond 34(220–223):217–230

    Article  Google Scholar 

  18. Krechetnikov R, Homsy GM (2009) Crown-forming instability phenomena in the drop splash problem. J Colloid Interface Sci 331(2):555–559

    Article  Google Scholar 

  19. Akers B, Belmonte A (2006) Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid. J Nonnewton Fluid Mech 135(2):97–108

    Article  Google Scholar 

  20. Duez C, Ybert C, Clanet C, Bocquet L (2007) Making a splash with water repellency. Nat phys 3(3):180–183

    Article  Google Scholar 

  21. Yoon SS, Jepsen RA, Nissen MR, O’Hern TJ (2007) Experimental investigation on splashing and nonlinear fingerlike instability of large water drops. J Fluids Struct 23(1):101–115

    Article  Google Scholar 

  22. Idelsohn SR, Onate E, Del Pin F (2003) A lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput struct 81(8):655–671

    Article  Google Scholar 

  23. Ling SC, Ling TYJ (1974) Anomalous drag-reducing phenomenon at a water/fish-mucus or polymer interface. J Fluid Mech 65(03):499–512

    Article  Google Scholar 

  24. Kubota Y, Mochizuki O (2009) Splash formation by a spherical object plunging into water. J Vis 12:339–345

    Article  Google Scholar 

  25. Koshizuka S (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dynamics J 4:29–46

    Google Scholar 

  26. Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56(2):199–210

    Article  Google Scholar 

  27. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

    Article  Google Scholar 

  28. Alupei IC, Popa M, Hamcerencu M, Abadie MJM (2002) Superabsorbant hydrogels based on xanthan and poly (vinyl alcohol): 1. the study of the swelling properties. Eur Polymer J 38(11):2313–2320

    Article  Google Scholar 

  29. Narayanan J, Xiong JY, Liu XY (2006) Determination of agarose gel pore size: absorbance measurements vis a vis other techniques. J Phys: Conf Ser 28(1):83 (IOP Publishing)

    Google Scholar 

  30. Kikuchi K, Mochizuki O (2010) A flow on a hydrogel surface mimicked a living cell. In: Proceedings of the 21st international symposium on transport phenomena in Kaohsiung city, Taiwan

    Google Scholar 

  31. Yagawa G, Shioya R (1994) Parallel finite elements on a massively parallel computer with domain decomposition, 4. Comput Syst Eng 4:495–503

    Article  Google Scholar 

  32. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the MEXT Program for the Strategic Research Foundation at Private Universities, 2012–2017 and the WCU (World Class University) Program through the Korea Science and Engineering Foundation funded by the Korean Ministry of Education, Science and Technology (R33-2008-000-10027-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genki Yagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yokoyama, M., Murotani, K., Yagawa, G., Mochizuki, O. (2014). Some Considerations on Surface Condition of Solid in Computational Fluid-Structure Interaction. In: Idelsohn, S. (eds) Numerical Simulations of Coupled Problems in Engineering. Computational Methods in Applied Sciences, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-06136-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06136-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06135-1

  • Online ISBN: 978-3-319-06136-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics