Skip to main content

Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Methods

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 33))

Abstract

This chapter provides an overview of how patient-specific cardiovascular fluid mechanics analysis, including fluid–structure interaction (FSI), can be carried out with the space–time (ST) and Arbitrary Lagrangian–Eulerian (ALE) techniques developed by the first three authors’ research teams. The core methods are the ALE-based variational multiscale (ALE-VMS) method, the Deforming-Spatial-Domain/Stabilized ST formulation, and the stabilized ST FSI technique. A good number of special techniques targeting cardiovascular fluid mechanics have been developed to be used with the core methods. These include (i) arterial-surface extraction and boundary condition techniques, (ii) techniques for using variable arterial wall thickness, (iii) methods for calculating an estimated zero-pressure arterial geometry, (iv) techniques for prestressing of the blood vessel wall, (v) mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, (vi) a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, (vii) a scaling technique for specifying a more realistic volumetric flow rate, (viii) techniques for the projection of fluid–structure interface stresses, (ix) a recipe for pre-FSI computations that improve the convergence of the FSI computations, (x) the Sequentially-Coupled Arterial FSI technique and its multiscale versions, (xi) techniques for calculation of the wall shear stress (WSS) and oscillatory shear index (OSI), (xii) methods for stent modeling and mesh generation, (xiii) methods for calculation of the particle residence time, and (xiv) methods for an estimated element-based zero-stress state for the artery. Here we provide an overview of the special techniques for stent modeling and mesh generation and calculation of the residence time with application to pulsatile ventricular assist device (PVAD). We provide references for some of the other special techniques. With results from earlier computations, we show how the core and special techniques work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Humphrey JD (2002) Cardiovascular solid mechanics. Springer, New York

    Google Scholar 

  2. Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  3. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. doi:10.1016/j.cma.2004.09.014

    Article  MATH  MathSciNet  Google Scholar 

  4. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900. doi:10.1002/fld.1430

    Article  MATH  MathSciNet  Google Scholar 

  5. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224–1231 (in Japanese)

    Article  Google Scholar 

  6. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Meth Appl Mech Eng 195:1885–1895. doi:10.1016/j.cma.2005.05.050

    Article  MATH  MathSciNet  Google Scholar 

  7. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36:160–168. doi:10.1016/j.compfluid.2005.07.014

    Article  MATH  Google Scholar 

  8. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  9. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    Article  MATH  MathSciNet  Google Scholar 

  10. Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediatr Cardiol 30:81–89

    Article  Google Scholar 

  11. Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Meth Appl Mech Eng 199:3583–3602

    Article  MathSciNet  Google Scholar 

  12. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    Article  MATH  MathSciNet  Google Scholar 

  13. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Meth Fluids 54:901–922. doi:10.1002/fld.1443

    Article  MATH  MathSciNet  Google Scholar 

  14. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Meth Biomed Eng 26:101–116. doi:10.1002/cnm.1241

    Article  MATH  Google Scholar 

  15. Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full eulerian simulations of biconcave Neo-Hookean particles in a Poiseuille flow. Comput Mech 46:147–157

    Article  MATH  MathSciNet  Google Scholar 

  16. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384. doi:10.1007/s00466-011-0619-0

    Article  MATH  Google Scholar 

  17. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, Hoboken

    Google Scholar 

  18. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073. doi:10.1007/s00466-012-0790-y

    Article  MATH  MathSciNet  Google Scholar 

  19. Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech. doi:10.1007/s00466-013-0858-3 (published online)

  20. Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech , doi:10.1007/s00466-013-0868-1 (published online)

  21. Takizawa K, Takagi H, Tezduyar TE, Torii R (2013) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech. doi:10.1007/s00466-013-0919-7 (published online)

  22. Takizawa K, Tezduyar TE, Buscher A, Asada S ( 2013) Space–time interface-tracking with topology change (ST-TC). Comput Mech. doi:10.1007/s00466-013-0935-7 (published online)

  23. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Meth Appl Mech Eng 29:329–349

    Article  MATH  MathSciNet  Google Scholar 

  24. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MATH  MathSciNet  Google Scholar 

  25. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MATH  MathSciNet  Google Scholar 

  26. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575. doi:10.1002/fld.505

    Article  MATH  MathSciNet  Google Scholar 

  27. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Meth Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  28. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Meth Appl Mech Eng 95:221–242. doi:10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  29. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: v. circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Meth Appl Mech Eng 59:85–99

    Article  MATH  MathSciNet  Google Scholar 

  30. Hughes TJR, Hulbert GM (1988) Space–time finite element methods for elastodynamics: formulations and error estimates. Comput Meth Appl Mech Eng 66:339–363

    Article  MATH  MathSciNet  Google Scholar 

  31. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Meth Fluids 65:324–340. doi:10.1002/fld.2448

    Article  MATH  Google Scholar 

  32. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36. doi:10.1109/2.237441

    Article  Google Scholar 

  33. Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Fluids, vol 3. Wiley, Hoboken (Chapter 17)

    Google Scholar 

  34. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Math Appl Sci 22:1230001. doi:10.1142/S0218202512300013

    Article  MathSciNet  Google Scholar 

  35. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267. doi:10.1007/s00466-011-0571-z

    Article  MATH  MathSciNet  Google Scholar 

  36. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Meth Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  37. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799

    Article  Google Scholar 

  38. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Meth Appl Mech Eng 197:173–201

    Article  MATH  MathSciNet  Google Scholar 

  39. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414

    Article  MATH  MathSciNet  Google Scholar 

  40. Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, Barcelona, Spain

    Google Scholar 

  41. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41. doi:10.1007/s00466-009-0425-0

    Article  MATH  MathSciNet  Google Scholar 

  42. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Meth Appl Mech Eng 198:3524–3533. doi:10.1016/j.cma.2008.05.024

  43. Tezduyar TE, Schwaab M, Sathe S (2007) Arterial fluid mechanics with the sequentially-coupled arterial FSI technique. In: Onate E, Papadrakakis M, Schrefler B (eds) Coupled Problems 2007. CIMNE, Barcelona, Spain

    Google Scholar 

  44. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mec 46:17–29. doi:10.1007/s00466-009-0423-2

    Article  MATH  MathSciNet  Google Scholar 

  45. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Meth Fluids 65:308–323. doi:10.1002/fld.2360

    Article  MATH  Google Scholar 

  46. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Meth Biomed Eng 27:1665–1710. doi:10.1002/cnm.1433

    Article  MATH  MathSciNet  Google Scholar 

  47. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908. doi:10.1115/1.4005071

    Article  Google Scholar 

  48. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599

    Article  MathSciNet  Google Scholar 

  49. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686. doi:10.1007/s00466-012-0760-4

    Article  MATH  MathSciNet  Google Scholar 

  50. Bluestein D, Niu L, Schoephoerster R, Dewanjee M (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25:344–356

    Article  Google Scholar 

  51. Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2013) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech. doi:10.1007/s00466-013-0931-y (published online)

  52. Esmaily-Moghadam M, Hsia T-Y, Marsden A (2014) A non-discrete method for computation of residence time in fluid mechanics simulations. Phys Fluids. doi:10.1063/1.4819142

  53. Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech. (accepted for publication)

    Google Scholar 

  54. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Meth Eng 19:171–225. doi:10.1007/s11831-012-9071-3

    Article  MathSciNet  Google Scholar 

  55. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Meth Fluids 57:601–629. doi:10.1002/fld.1633

    Article  MATH  MathSciNet  Google Scholar 

  56. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056

    Article  Google Scholar 

  57. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik (2000) left ventricular assist device. Comput Meth Appl Mech Eng 198:3534–3550

    Google Scholar 

  58. Saad Y, Schultz M (1986) GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Google Scholar 

  59. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi:10.1115/1.4005073

    Article  Google Scholar 

  60. Rhee K, Han MH, Cha SH, Khang G (2001) The changes of flow characteristics caused by a stent in fusiform aneurysm models. Engineering in Medicine and Biology Society, 2001. In: Proceedings of the 23rd annual international conference of the IEEE, vol 1, pp 86–88. doi:10.1109/IEMBS.2001.1018852

  61. Jou L-D, Mawad ME (2011) Hemodynamic effect of neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Med Eng Phys 33:573–580. doi:10.1016/j.medengphy.2010.12.013

    Article  Google Scholar 

  62. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics withimproved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375

    Article  MATH  MathSciNet  Google Scholar 

  63. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Meth Appl Mech Eng 190:305–319

    Article  MATH  MathSciNet  Google Scholar 

  64. Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science. CD-ROM, Monterrey, Mexico

    Google Scholar 

  65. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol. 246/AMD, vol 143. ASME, New York, pp 7–24

    Google Scholar 

  66. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Meth Appl Mech Eng 119:73–94. doi:10.1016/0045-7825(94)00077-8

    Article  MATH  Google Scholar 

  67. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178

    Article  Google Scholar 

  68. Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen J (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid–structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42:131–150

    Google Scholar 

  69. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    Article  MATH  MathSciNet  Google Scholar 

  70. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Meth Appl Sci 22:1230002. doi:10.1142/S0218202512300025

    Article  Google Scholar 

  71. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry, and mesh refinement. Compu Meth Appl Mech Eng 194:4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  72. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, Toward Integration of CAD and FEA

    Book  Google Scholar 

  73. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Meth Appl Mech Eng 198:3902–3914

    Article  MATH  Google Scholar 

  74. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Meth Appl Mech Eng 199:2403–2416

    Article  MATH  Google Scholar 

  75. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Numer Meth Fluids 65:236–253

    Google Scholar 

  76. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to xfem. Int J Numer Meth Eng 83:765–785

    Google Scholar 

  77. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Meth Appl Mech Eng 200:1367–1378

    Article  MATH  MathSciNet  Google Scholar 

  78. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. doi:10.1007/s00466-008-0261-7

    Article  MATH  Google Scholar 

  79. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Meth Fluids 64:1201–1218. doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  80. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Meth Appl Mech Eng 249–252:28–41

    Article  MathSciNet  Google Scholar 

  81. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Meth Appl Mech Eng 195:3776–3796

    Google Scholar 

  82. Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL (2011) The modeling of congenital hearts alliance (MOCHA), “a comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations”. Comput Mech 48:277–291 doi:10.1007/s00466-011-0599-0

  83. Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Meth Appl Mech Eng 195:1621–1632. doi:10.1016/j.cma.2005.05.032

    Article  MATH  MathSciNet  Google Scholar 

  84. Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Meth Fluids 54:593–608. doi: 10.1002/fld.1484

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Takizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Long, C.C., Marsden, A.L., Schjodt, K. (2014). Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Methods. In: Idelsohn, S. (eds) Numerical Simulations of Coupled Problems in Engineering. Computational Methods in Applied Sciences, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-06136-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06136-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06135-1

  • Online ISBN: 978-3-319-06136-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics