Skip to main content

On the Application of Two-Fluid Flows Solver to the Casting Problem

  • Chapter
  • First Online:
Numerical Simulations of Coupled Problems in Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 33))

  • 1945 Accesses

Abstract

Two-fluid modeling of the casting process is important as it particularly provides insight to the air behavior during the filling process. Large deformations of the material-air front require an interface capturing technique to detect it on the fixed Eulerian meshes. On the other hand, if sharp interface is considered, jumps in the material properties along one single element causes severe instabilities in the solution. We review various techniques developed for both conservative level set method to capture the interface, and enrichment techniques to cure the instabilities. The coupling of the level set method with one of these enrichment techniques is applied to the mold filling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osher S, Shu C-W (1991) High-order essentially nonoscillatory schemes for hamilton-jacobi equations. SIAM J Numer Anal 28(4):907–922

    Article  MATH  MathSciNet  Google Scholar 

  2. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces, vol 153. Springer, New York

    Google Scholar 

  3. Sussman M, Fatemi E (1999) An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Comput 20(4):1165–1191

    Article  MATH  MathSciNet  Google Scholar 

  4. Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235

    Article  MATH  MathSciNet  Google Scholar 

  5. Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for improved interface capturing. J Comput Phys 183(1):83–116

    Article  MATH  MathSciNet  Google Scholar 

  6. Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337

    Article  MATH  MathSciNet  Google Scholar 

  7. Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136

    Article  MATH  MathSciNet  Google Scholar 

  8. Mut F, Buscaglia GC, Dari EA (2004) A new mass-conserving algorithm for level set redistancing on unstructured meshes. Mecanica Computacional 23:1659–1678

    Google Scholar 

  9. Ausas RF, Dari EA, Buscaglia GC (2011) A geometric mass-preserving redistancing scheme for the level set function. Int J Numer Meth Fluids 65(8):989–1010

    Article  MATH  Google Scholar 

  10. Marchandise E, Remacle J-F, Chevaugeon N (2006) A quadrature-free discontinuous galerkin method for the level set equation. J Comput Phys 212(1):338–357

    Article  MATH  MathSciNet  Google Scholar 

  11. Idelsohn S, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198(33):2750–2767

    Article  MATH  Google Scholar 

  12. Kamran K, Rossi R, Oñate E, Idelsohn SR (2012) A compressible lagrangian framework for the simulation of the underwater implosion of large air bubbles. Comput Methods Appl Mech Eng 225(1):210–225

    Google Scholar 

  13. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Meth Eng 47(6):1189–1214

    Article  MATH  Google Scholar 

  14. Sunitha N, Jansen KE, Lahey RT Jr (2005) Computation of incompressible bubble dynamics with a stabilized finite element level set method. Comput Methods Appl Mech Eng 194(42):4565–4587

    Google Scholar 

  15. Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230(12):4536–4558

    Article  MATH  MathSciNet  Google Scholar 

  16. Rossi R, Larese A, Dadvand P, Oñate E (2012) An efficient edge-based level set finite element method for free surface flow problems. Int J Numer Methods Fluids 33:737–766

    Google Scholar 

  17. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput phys 114(1):146–159

    Article  MATH  Google Scholar 

  18. Coppola-Owen AH, Codina R (2005) Improving eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49(12):1287–1304

    Article  MATH  MathSciNet  Google Scholar 

  19. Ausas RF, Buscaglia GC, Idelsohn SR (2012) A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int J Numer Methods Fluids 70(7):829–850

    Article  MathSciNet  Google Scholar 

  20. Fries T-P, Belytschko T (2006) The intrinsic xfem: a method for arbitrary discontinuities without additional unknowns. Int J Numer Meth Eng 68(13):1358–1385

    Article  MATH  Google Scholar 

  21. Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids: flow simulation and modeling. J Appl Mech 70(1):10–17

    Article  MATH  MathSciNet  Google Scholar 

  22. Groß S, Reusken A (2007) An extended pressure finite element space for two-phase incompressible flows with surface tension. J Comput Phys 224(1):40–58

    Article  MATH  MathSciNet  Google Scholar 

  23. Rasthofer U, Henke F, Wall WA, Gravemeier V (2011) An extended residual-based variational multiscale method for two-phase flow including surface tension. Comput Methods Appl Mech Eng 200(21):1866–1876

    Article  MATH  MathSciNet  Google Scholar 

  24. Sauerland H, Fries T-P (2011) The extended finite element method for two-phase and free-surface flows: a systematic study. J Comput Phys 230(9):3369–3390

    Article  MATH  MathSciNet  Google Scholar 

  25. Moës N, Cloirec M, Cartraud P, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28):3163–3177

    Article  MATH  Google Scholar 

  26. Reusken A (2008) Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput Vis Sci 11(4–6):293–305

    Article  MathSciNet  Google Scholar 

  27. Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the x-fem for stress analysis around cracks. Int J Numer Meth Eng 64(8):1033–1056

    Article  MATH  Google Scholar 

  28. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

    Article  MATH  Google Scholar 

  29. Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2012) Migration of a generic multi-physics framework to hpc environments. Comput fluids 80:301–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kamran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamran, K., Rossi, R., Dadvand, P., Idelsohn, S.R. (2014). On the Application of Two-Fluid Flows Solver to the Casting Problem. In: Idelsohn, S. (eds) Numerical Simulations of Coupled Problems in Engineering. Computational Methods in Applied Sciences, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-06136-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06136-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06135-1

  • Online ISBN: 978-3-319-06136-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics