Skip to main content

Molecular Mobility and Phase Transformations of Several Low Molecular Weight Glass Formers Confined to Nanoporous Silica Matrices

  • Chapter
  • First Online:

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

The dynamical behavior of three low molecular weight glass formers confined to nanostructured mesoporous silica (100 % Si) with pore sizes ranging from 2.8 to 8.6 nm, is probed by Dielectric Relaxation Spectroscopy (DRS). The confined guests embrace different classes of materials: a surfactant, Triton X-100, a liquid crystal, E7 nematic mixture and the pharmaceutical drug, Ibuprofen. All three glass formers show two distinct dynamical domains inside the pores, as revealed by the detection of both bulk-like and surface processes. The latter is characterized by a slower mobility than the bulk-like process and the temperature dependence follows the characteristic Vogel-Fulcher-Tammann-Hesse (VFTH) law indicating a glassy dynamics of the molecules anchored to the pore surface. In the case of E7, the Vogel temperature (T\(_{0})\) of this process is size dependent, decreasing with increasing pore size, which is taken as a finite size effect. Concerning the bulk-like process, assigned to the glassy dynamics of the molecules in the middle of the pore, the confinement effect becomes stronger depending on the material as follows: (1) Triton X-100, undergoing almost no change in the glass transition temperature (T\(_{g})\), only a slight increase \(\sim \)3 K is observed; (2) E7, with a maximum decrease of 10 K in T\(_{\mathrm{g}}\) compared to the bulk temperature for a pore size of 6.8 nm; and (3) Ibuprofen, which shows not only a higher decrease in the glass transition temperature, \(\sim \)30 K when confined to a pore size of 3.6 nm (MCM-41), but also its temperature dependence of relaxation times varies from VFTH to Arrhenius like, which is interpreted as 3.6 nm being a dimension that interferes with the length scale of cooperativity. Moreover, two secondary relaxations are detected in the pharmaceutical drug, the more local one being insensitive to confinement while the second process, taken as the precursor of the glass transition, becomes more mobile relatively to the respective process in bulk Ibuprofen. The results confirm that molecular dynamics of the probed low molecular weight guests confined into nanostructured mesoporous hosts is controlled by a counterbalance between confinement and surface effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BJH:

Barrett-Joyner-Halenda

CM:

Coupling model

CN:

Cyano group

CPG:

controlled pore glasses

DSC:

Differential scanning calorimetry

DRS:

Dielectric relaxation spectroscopy

FTIR:

Fourier transform infrared spectroscopy

HN:

Havriliak- Negami

JG:

Johari-Goldstein

LCs:

Liquid-crystals

MWS:

Maxwell-Wagner-Sillars

NMR:

Nuclear magnetic resonance

M\(_{\mathrm{W}}\) :

Molecular weight

T\(_{\mathrm{g}}\) :

Glass transition temperature

T\(_{\mathrm{IN}}\) :

Isotropic to nematic transition

T\(_{0}\) :

Vogel Temperature

TEM:

Transmission electron microscopy

TEOS:

Tetraethoxysilane

TGA:

Thermogravimetric analysis

VFTH:

Vogel-Fulcher-Tamman-Hesse

XRD:

\(\mathrm{X}\)-ray diffraction

\(\Delta \upvarepsilon \) :

Dielectric strength

References

  1. Donth E (2001) Relaxation dynamics in liquids and disordered materials, vol 48. Springer Series in Materials Science, Berlin

    Google Scholar 

  2. Leocmach M, Tanaka H (2012) Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat Commun 3:974–982

    Google Scholar 

  3. Cavagna A (2009) Supercooled liquids for pedestrians. Phys Rep 476:51–124

    CAS  Google Scholar 

  4. Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials. Rev Moder Phys 83(2):587–645

    CAS  Google Scholar 

  5. Schönhals A, Goering H, Schick Ch, Frick B, Zorn R (2005) Polymers in nanoconfinement: what can be learned from relaxation and scattering experiments? J Non-Cryst Solids 351:2668

    Google Scholar 

  6. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    CAS  Google Scholar 

  7. Kremer F, Huwe A, Schönhals A, Różański SA (2003) Molecular dynamics in confining space in broadband dielectric spectroscopy; Schönhals, A.; Kremer F., Eds.; Springer, Berlin. Chap. 6.

    Google Scholar 

  8. Ngai KL (1993) In: Richert R, Blumen A (eds) Disorder effects on relaxational processes. Springer, Berlin

    Google Scholar 

  9. Roth CB, Dutcher JR (2005) Glass transition and chain mobility in thin polymer films. J Electroanal Chem 584:13–22

    Google Scholar 

  10. Sappelt D, Jäckle J (1993) The cooperativity length in models for the glass transition. J Phys A: Math Gen 26:7325–7341

    CAS  Google Scholar 

  11. Fischer EW, Donth E, Steffen W (1992) Temperature dependence of characteristic length for glass transition. Phys Rev Lett 68:2344–2346

    CAS  Google Scholar 

  12. Gorbatschow W, Arndt M, Stannarius R, Kremer F (1996) Dynamics of h-bonded liquids confined to nanopores. Europhys Lett 35:719–724

    CAS  Google Scholar 

  13. Arndt M, Stannarius R, Gorbatschow W, Kremer F (1996) Dielectric investigations of the dynamic glass transition in nanopores. Phys Rev E 54:5377–5390

    CAS  Google Scholar 

  14. Koppensteiner J, Schranz W, Puica MR (2008) Confinement effects on glass forming liquids probed by dma. Phys Rev B 78:054203–054214

    Google Scholar 

  15. Ngai KL (2007) Predicting the changes of relaxation dynamics with various modifications of the chemical and physical structures of glass-formers. J Non-Cryst 353:4237–4245

    CAS  Google Scholar 

  16. Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New York, Chap 2

    Google Scholar 

  17. Beiner M (2008) Nanoconfinement as a tool to study early stages of polymer crystallization. J Polym Sci: Part B, Polym Phys 46:1556

    CAS  Google Scholar 

  18. Beiner M, Rengarajan GT, Pankaj S, Enke D, Steinhart M (2007) Manipulating the crystalline state of pharmaceuticals by nanoconfinement. Nano Lett 7:1381–1385

    CAS  Google Scholar 

  19. Rengarajan GT, Enke D, Steinhart M, Beiner M (2011) Size-dependent growth of polymorphs in nanopores and ostwald’s step rule of stages. Phys Chem Chem Phys 13:21367–21374

    CAS  Google Scholar 

  20. Johari GP (2005) Water’s size-dependent freezing to cubic ice. J Chem Phys 122:194504–194509

    CAS  Google Scholar 

  21. Rengarajan GT, Enke D, Beiner M (2007) Crystallization behavior of acetaminophen in nanopores. Open Phys Chem J 1:18–24

    CAS  Google Scholar 

  22. de Gennes PG (1975) The physics of liquid crystals. Clarendon press, Oxford

    Google Scholar 

  23. Chandrasekhar S (1992) Liquid crystals. Cambridge University Press, Cambridge

    Google Scholar 

  24. Kremer F, Schönhals A (2003) Molecular and collective dynamics of (polymeric) liquid crystals. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, Chap. 10

    Google Scholar 

  25. Demus D, Goodby J, Gray GW, Spiess HW, Vill V (eds) (1998) Handbook of liquid crystals. Wiley-VCH Weinheim, Weinheim

    Google Scholar 

  26. Bellini T, Radzihovsky L, Toner J, Clark NA (2001) Universality and scaling in the disordering of a smectic liquid crystal. Science 294:1074–1079

    CAS  Google Scholar 

  27. Iannacchione GS (2004) Review of liquid-crystal phase transitions with quenched random disorder. Fluid Phase Equilib 177:222–223

    Google Scholar 

  28. Sinha GP, Aliev FM (1998) Dielectric spectroscopy of liquid crystals in smectic, nematic, and isotropic phases confined in random porous media. Phys Rev E 58:2001–2010

    CAS  Google Scholar 

  29. Frunza L, Frunza S, Kosslick H, Schönhals A (2008) Phase behavior and molecular mobility of n-octylcyanobiphenyl confined to molecular sieves: dependence on the pore size. Phys Rev E 78:051701–051712

    Google Scholar 

  30. Iannacchione GS, Crawford GP, Žumer S, Doane JW, Finotello D (1993) Randomly constrained orientational order in porous glass. Phys Rev Lett 71:2595–2598

    CAS  Google Scholar 

  31. Krause C, Schönhals A (2013) Phase transitions and molecular mobility of a discotic liquid crystal under nanoscale confinement. J Phys Chem C 117:19712–19720

    CAS  Google Scholar 

  32. Azais T, Tourne-Peteilh C, Aussenac F, Baccile N, Coelho C, Devoisselle JM, Babonneau F (2006) Solid-state nmr study of ibuprofen confined in mcm-41 material. Chem Mater 18:6382–6390

    Google Scholar 

  33. Charnay C, Begu S, Tourne-Peteilh C, Nicole L, Lerner DA (2004) Devoisselle j.m., inclusion of ibuprofen in mesoporous templated silica:drug loading and release property. Eur J Pharm Biopharm 57:533–540

    CAS  Google Scholar 

  34. Rengarajan GT, Enke D, Steinhart M, Beiner M (2008) Stabilization of the amorphous state of pharmaceuticals in nanopores. J Mater Chem 18:2537–2539

    CAS  Google Scholar 

  35. Beiner M (2008) Nanoconfinement as a tool to study early stages of polymer crystallization. J Polym Sci: Part B Polym Phys 46:1556–1561

    CAS  Google Scholar 

  36. Jackson CL, McKenna GB (1996) Vitrification and crystallization of organic liquids confined to nanoscale pores. Chem Mater 8:2128–2137

    CAS  Google Scholar 

  37. Bergman R, Swenson J (2000) Dynamics of supercooled water in confined geometry. Nature 403:283–286

    CAS  Google Scholar 

  38. Konno T, Kinuno K, Kataoka K (1986) Physical and chemical changes of medicinals in mixtures with adsorbents in the solid state. i. effect of vapor pressure of the medicinals on changes in crystalline properties. Chem Pharm Bull (Tokyo) 34:301–307

    CAS  Google Scholar 

  39. Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334

    CAS  Google Scholar 

  40. Prasad R, Lele S (1994) Stabilization of the amorphous phase inside carbon nanotubes: solidification in a constrained geometry. Philos Mag Lett 70:357–361

    CAS  Google Scholar 

  41. Qian KK, Bogner RH (2012) Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci 101(2):444–463

    CAS  Google Scholar 

  42. Laitinen R, Lobmann K, Strachan CJ, Grohganz H, Rades T (2013) Emerging trends in the stabilization of amorphous drugs. Int J Pharm 453:65–79

    CAS  Google Scholar 

  43. Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12(6):799–806

    CAS  Google Scholar 

  44. Yoshioka M, Hancock BC, Zografi G (1995) Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipiatates. J Pharmaceu Sci 84(8):983–986

    CAS  Google Scholar 

  45. Crawford GF, Žumer S (eds) (1996) Liquid crystals in complex geometries. formed by polymer and porous networks. Taylor and Francis, London.

    Google Scholar 

  46. Aliev F, Sinha G (2001) Non-debye relaxation and glass-like behavior of confined liquid crystals. Mol Cryst Liq Crys 364:435–442

    CAS  Google Scholar 

  47. Sinha G, Leys J, Glorieux C, Thoen J (2005) Dielectric spectroscopy of aerosil-dispersed liquid crystal embedded in anopore membranes phys. Rev E 72:051710

    CAS  Google Scholar 

  48. Cramer Ch, Cramer Th, Kremer F, Stannarius R (1997) Measurement of orientational order and mobility of a nematic liquid crystal in random nanometer confinement. J Chem Phys 106:3730–3742

    CAS  Google Scholar 

  49. Massalska-Arodź M, Krawczyka J, Procyk B, Kremer F (2007) Dielectric relaxation studies of 4-(2-hexyloxyethoxy)4’-cyanobiphenyl (6o2ocb) enclosed in sio2 nanopores. Phase Transitions 80:687–695

    Google Scholar 

  50. Werner J, Otto K, Enke D, Pelzl G, Janowski F, Kresse H (2000) Dielectric investigations of the n-smb transition in a porous glass. Liq Cryst 10:1295–1300

    Google Scholar 

  51. Frunza S, Frunza L, Schönhals A (2000) Dielectric measurements of liquid crystals confined to molecular sieves. J Phys IV France 10:115–118

    Google Scholar 

  52. Frunza L, Kosslick H, Frunza S, Schönhals A (2006) Molecular dynamics of 4-n-octyl-4’-cyanobiphenyl in partially filled nanoporous sba-type molecular sievesmicropor. Mesopor Mater 90:259–270

    CAS  Google Scholar 

  53. Frunza S, Frunza L, Schönhals A, Zubowa HL, Kosslick H, Carius HE, Frick R (1999) On the confinement of liquid crystals in molecular sieves:dielectric measurements. Chem Phys Lett 307:167–176

    CAS  Google Scholar 

  54. Rózanski SA, Stannarius R, Kremer F, Diele S (2001) Structure and dynamics of ferroelectric liquid crystals under random geometrical restrictions liq. Cryst 28:1071–1083

    Google Scholar 

  55. Rózanski SA, Kremer F, Groothues H, Stannarius R (1997) The dielectric properties of nematic liquid crystal, 5cb confined to treated and untreated anopore membranes. Mol Cryst Liq Crys 303:319–324

    Google Scholar 

  56. Nazario Z, Sinha GP, Aliev FM (2001) Dynamics of librational mode of nematic liquid crystal confined in cylindrical pores. Mol Cryst Liq Crys 367:333–340

    CAS  Google Scholar 

  57. Diez S, Pérez-Jubindo MA, De la Fuente MR, López DO, Salud J, Tamarit JL (2006) On the in?uence of cylindrical sub-micrometer con?nement on heptyloxycyanobiphenyl (7ocb). a dynamic dielectric study. Chem Phys Lett 423:463–469

    CAS  Google Scholar 

  58. Bengoechea MR, Aliev FM (2005) Dielectric relaxation in thin liquid crystal layers formed on cylindrical pore walls. J Non-Cryst Solids 351:2685–2689

    CAS  Google Scholar 

  59. Brás AR, Dionísio M, Schönhals A (2008) Confinement and surface effects on the molecular dynamics of a nematic mixture investigated by dielectric relaxation spectroscopy. J Phys Chem B 112:8227–8235

    Google Scholar 

  60. Leys J, Sinha G, Glorieux C, Thoen J (2005), Influence of nanosized confinements on 4-n-decyl-4’-cyanobiphenyl (10CB): a broadband dielectric study. Phys Rev E 71:051709 (13 pages).

    Google Scholar 

  61. Koppensteiner J, Schranz W, Carpenter MA (2010), Revealing the pure confinement effect in glass-forming liquids by dynamic mechanical analysis. Phys Rev B 81:024202 (8 pages).

    Google Scholar 

  62. Kranbuehl D, Knowles R, Hossain A, Hurt M (2003) Modelling the effects of confinement on the glass transition temperature and segmental mobility. J Phys: Condens Matter 15:S1019–S1029

    CAS  Google Scholar 

  63. Aliev FM (1996) Liquid crystals and polymers in pores, the influence of confinement on dynamic and interfacial properties. In: Crawford GF, Žumer S (eds) Liquid crystals in complex geometries, formed by polymer and porous networks. Taylor and Francis, London

    Google Scholar 

  64. Pissis P, Daoukaki-Diamanti D, Apekis L, Christodoulides C (1994) The glass transition in confined liquids. J Phys Condens Matter 6:L325–L328

    CAS  Google Scholar 

  65. Iacob C, Sangoro JR, Papadopoulos P, Schubert T, Naumov S, Valiullin R, Kärger J, Kremer F (2010) Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Phys Chem Chem Phys 12:13798–13803

    CAS  Google Scholar 

  66. Richert R (2011) Dynamics of nanoconfined supercooled liquids. Ann Rev Phys Chem 62:65–84

    CAS  Google Scholar 

  67. Balas F, Manzano M, Horcajada P, Vallet-Regí M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128:8116

    CAS  Google Scholar 

  68. Qu F, Zhu G, Huang S, Li S, Qiu S (2006) Effective controlled release of captopril by silylation of mesoporous mcm-41. ChemPhysChem 7:400–406

    CAS  Google Scholar 

  69. Tang Q, Xu Y, Wu D, Sun Y (2006) Hydrophobicity-controlled drug delivery system from organic modified mesoporous silica. Chem Lett 35:474–475

    CAS  Google Scholar 

  70. Dadmun MD, Muthukumar M (1993) The nematic to isotropic transition of a liquid crystal in porous media. J Chem Phys 98:4850–4852

    CAS  Google Scholar 

  71. Brás AR, Merino EG, Neves PD, Fonseca IM, Dionísio M, Schönhals A, Correia NT (2011) Amorphous ibuprofen confined in nanostructured silica materials: a dynamical approach. J Phys Chem C 115:4616–4623

    Google Scholar 

  72. Brás AR, Fonseca IM, Dionísio M, Schönhals A, Affouard F, Correia NT Influence of nanoscale confinement on the molecular mobility of ibuprofen. submitted.

    Google Scholar 

  73. Buntkowsky G, Breitzke HH, Adamczyk A, Roelofs F, Emmler T, Gedat E, Grünberg B, Xu Y, Limbach H-H, Shenderovich I et al (2007) Structural and dynamical properties of guest molecules confined in mesoporous silica materials revealed by NMR. Phys Chem Chem Phys 9:4843–4853

    CAS  Google Scholar 

  74. Izquierdo-Barba I, Sousa E, Doadrio JC, Doadrio AL, Pariente JP, Martínez A, Babonneau F, Vallet-Regí M (2009) In?uence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from mcm-48, sba-15 and functionalized sba-15. J Sol-Gel Sci Technol 50:421–429

    CAS  Google Scholar 

  75. Azaïs T, Hartmeyer G, Quignard S, Laurent G, Tourné-Péteilh C, Devoisselle JM, Babonneau F (2009) Solid-state nmr characterization of drug-model molecules encapsulated in mcm-41 silica. Pure Appl Chem 81(8):1345–1355

    Google Scholar 

  76. MuWoz Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2003) MCM-41 organic modification as drug delivery rate regulator. Chem Mater 15:500–503

    Google Scholar 

  77. Arndt M, Stannarius R, Groothues H, Hempel E, Kremer F (1997) Length scale of cooperativity in the dynamic glass transition. Phys Rev Lett 79:2077–2080

    CAS  Google Scholar 

  78. Schüller J, Mel’nichenko YB, Richert R, Fischer EW (1994) Dielectric studies of the glass transition in porous media. Phys Rev Lett 73:2224–2227

    Google Scholar 

  79. Cramer Ch, Cramer Th, Kremer F, Stannarius R (1997) Measurement of orientational order and mobility of a nematic liquid crystal in random nanometer confinement. J Chem Phys 106(9):3730–3742

    CAS  Google Scholar 

  80. Frunza S, Frunza L, Tintaru M, Enache I, Beica T, Schönhals A (2004) Dynamics of the surface layer in cyanobiphenyl-aerosil nanocomposites with a high silica density. Liq Cryst 31:913–932

    CAS  Google Scholar 

  81. Brás AR, Dionísio M, Schönhals A (2008) Confinement and surface effects on the molecular dynamics of a nematic mixture investigated by dielectric relaxation spectroscopy. J Phys Chem B 112(28):8227–8235

    Google Scholar 

  82. Brás AR, Frunza S, Guerreiro L, Fonseca IM, Corma A, Frunza L, Dionísio M, Schönhals A (2010), Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree. J Chem Phys 132:224508 (1–12).

    Google Scholar 

  83. Park J-Y, Mckenna GB (2000) Size and con?nement effects on the glass transition behavior of polystyrene/o-terphenyl polymer solutions. Phys Rev B 61:6667–6676

    CAS  Google Scholar 

  84. Trofymluk O, Levchenko AA, Navrotsky A (2005), Interfacial effects on vitrification of confined glass-forming liquids. J Chem Phys 123:194509 (1–7).

    Google Scholar 

  85. Zheng W, Simon SL (2007), Confinement effects on the glass transition of hydrogen bonded liquids. J Chem Phys 127:194501 (1–11).

    Google Scholar 

  86. Le Quellec C, Dosseh G, Audonnet F, Brodie-Linder N, Alba-Simionesco C, Haüssler WB (2007) Frick influence of surface interactions on the dynamics of the glass former ortho-terphenyl confined in nanoporous silica. Eur Phys J Spec Top 141:11–18

    Google Scholar 

  87. Rengarajan GT, Enke D, Steinhart M, Beiner M (2008) Stabilization of the amorphous state of pharmaceuticals in nanopores. J Mater Sci 18:2537–2539 (ESI; Fig. S3).

    Google Scholar 

  88. Van Speybroeck M, Mellaerts R, Martens J, Annaert P, Van Den Mooter G, Augustijns P (2011) Ordered mesoporous silica for the delivery of poorly soluble drugs. In: Wilson CJ, Crowley PJ (eds) Controlled release in oral drug delivery: advances in delivery science and technology. Springer New York, Chap, p 10

    Google Scholar 

  89. Ruiz-Hitzky E, Ariga K, Lvov YM (eds) (2008) Bio-inorganic hybrid nanomaterials: strategies, syntheses, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

  90. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) J Pharm Sci 97:632–653

    CAS  Google Scholar 

  91. Beck S, Vartuli JC, Roth WJ, Loenowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    CAS  Google Scholar 

  92. Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Angew Chem 115:3254

    Google Scholar 

  93. Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Angew Chem Int Ed 42:3146

    CAS  Google Scholar 

  94. Gao L, Wang Y, Wang J, Huang L, Shi L, Fan X, Zou Z, Yu T, Zhu M, Li Z (2006) A novel znii-sensitive fluorescent chemosensor assembled within aminopropyl-functionalized mesoporous sba-15. Inorg Chem 45:6844–6850

    CAS  Google Scholar 

  95. Merino EG, Neves PD, Fonseca IM, Danéde F, Idrissi A, Dias CJ, Dionísio M, Correia NT (2013) Detection of two glass transitions on triton x-100 under confinement. J Phys Chem B 117:21516–21528

    CAS  Google Scholar 

  96. van Speybroeck M, Barillaro V, DoThi T, Mellaerts R, Martens J, van Humbeeck J, Vermant J, Annaert P, van den Mooter G, Augustijns P (2009) Ordered mesoporous silica material sba-15: a broad-spectrum formulation platform for poorly soluble drugs. J Pharm Sci 98:2648–2658

    Google Scholar 

  97. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7758

    Google Scholar 

  98. Vallet-Regí M, Rámila A, del Real RP (2001) Pérez-pariente, a new property of mcm-41:? Drug delivery system. J Chem Mater 13:308–311

    Google Scholar 

  99. Muñoz Rámila A, Pérez-pariente J, Díaz I, Vallet-Regí M (2003) MCM-41 organic modification as drug delivery rate regulator. Chem Mater 15:500–503

    Google Scholar 

  100. Doadrio C, Sousa EMB, Iizquierdo-Barba I, Doadrio AL, Pérez-Pariente J, Vallet-Regí M (2006) functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J Mater Chem 16:462–466

    CAS  Google Scholar 

  101. Zeng W, Qian XF, Zhang YB, Yin J, Zhu ZK (2005) organic modified mesoporous mcm-41 through solvothermal process as drug delivery system. Mater Res Bull 40:766–772

    CAS  Google Scholar 

  102. Qu F, Zhu G, Huang S, Li S, Sun J, Zhang D, Qiu S (2006) Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica. Micropor Mesopor Mater 92:1–9

    CAS  Google Scholar 

  103. Nunes CD, Vaz PD, Fernandes AC, Ferreira P, Romão CC, Calhorda MJ (2007) Loading and delivery of sertraline using inorganic micro and mesoporous materials. Eur J Pharm Biopharm 66:357–365

    CAS  Google Scholar 

  104. van Speybroeck M, Mellaerts R, Mols R, DoThi T, Martens JA, van Humbeeck J, Annaert P, van den Mooter G, Augustijns P (2010) enhanced absorption of the poorly soluble drug feno?brate by tuning its release rate from ordered mesoporous silica. Eur J Pharm Sci 41:623–630

    Google Scholar 

  105. Izquierdo-Barba I, Martínez A, Doadrio AL, Pérez-Pariente J, Vallet-Regí M (2005) Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 26:365–373

    CAS  Google Scholar 

  106. Mellaerts R, Jammaer JAG, Van Speybroeck M, Chen H, Van Humbeeck J, Augustijns P, Van den Mooter G, Martens JA (2008) Physical state of poorly water soluble therapeutic molecules loaded into sba-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen. Langmuir 24:8651–8659

    CAS  Google Scholar 

  107. Shen SC, Ng WK, Chia L, Dong YC, Tan RB (2010) Stabilized amorphous state of ibuprofen by co-spray drying with mesoporous sba-15 to enhance dissolution properties. J Pharm Sci 99:1997–2007

    CAS  Google Scholar 

  108. Doadrio AL, Sousa EMB, Doadrio JC, Pérez-Pariente J, Izquierdo-Barba I, Vallet-Regí M (2004) Mesoporous sba-15 hplc evaluation for controlled gentamicin drug delivery. J Controlled Release 97:125–132

    CAS  Google Scholar 

  109. Vallet-Regí M, Doadrio JC, Doadrio I, Izquierdo-Barba I, Pérez-Pariente J (2004) hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics 172:435–439

    Google Scholar 

  110. Tozuka Y, Wongmekiat A, Kimura K, Moribe K, Yamamura S, Yamamoto K (2005) Effect of pore size of fsm-16 on the entrapment of flurbiprofen in mesoporous structures. Chem Pharm Bull 53:974–977

    CAS  Google Scholar 

  111. Tozuka Y, Oguchi T, Yamamoto K (2003) Adsorption and entrapment of salicylamide molecules into the mesoporous structure of folded sheets mesoporous material (fsm-16). Pharm Res 20:926–930

    CAS  Google Scholar 

  112. Merino EG, Rodrigues C, Teresa Viciosa M, Melo C, Sotomayor J, Dionísio M, Correia NT (2011) phase transformations undergone by triton x-100 probed by differential scanning calorimetry and dielectric relaxation spectroscopy. J Phys Chem B 115:12336–12347

    CAS  Google Scholar 

  113. Merino EG, Danéde F, Derrollez P, Dias CJ, Viciosa MT, Correia NT, Dionísio M (2013) Investigating the influence of morphology in the dynamical behavior of semicrystalline triton x-100: insights in the detection/nondetection of the \(\alpha \)?-process. J Phys Chem B 117:9793–9805

    CAS  Google Scholar 

  114. van Turnhout J, Wübbenhorst M (2002) Analysis of complex dielectric spectra. II: evaluation of the activation energy landscape by differential sampling. J Non-Cryst Sol 305:50–58

    Google Scholar 

  115. Schönhals A, Kremer F (2003) Analysis of dielectric spectra. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, Chap. 3

    Google Scholar 

  116. Steeman PAM, van Turnhout J (2003) Dielectric properties of inhomogeneous media. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, Chap. 13

    Google Scholar 

  117. Boersma A, Van Turnhout J, Wübbenhorst M (1998) Dielectric characterization of a thermotropic liquid crystalline copolyesteramide:? 1 Relaxation peak assignment. Macromolecules 31:7453–7460

    CAS  Google Scholar 

  118. Schröter K, Unger R, Reissig S, Garwe F, Kahle S, Beiner M, Donth E (1998) Dielectric spectroscopy in the \(\alpha \beta \) splitting region of glass transition in poly(ethyl methacrylate) and poly(n-butyl methacrylate):? different evaluation methods and experimental conditions. Macromolecules 31:8966–8972

    Google Scholar 

  119. Vogel H (1921) The temperature dependence law of the viscosity of fluids. Phys Zeit 22:645–646

    CAS  Google Scholar 

  120. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    CAS  Google Scholar 

  121. Tammann G, Hesse W (1926) The dependancy of viscosity on temperature in hypothermic liquids. Z Anorg Allg Chem 156:245–257

    Google Scholar 

  122. Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209

    Google Scholar 

  123. Moynihan CT, Macebo PB, Montrose CJ, Gupta PK, DeBolt MA, Dill JF, Dom BE, Drake PW, Esteal AJ, Elterman PB et al (1976) Structural relaxation in vitreous materials. Ann NY Acad Sci 279:15–35

    CAS  Google Scholar 

  124. Brás ARE, Henriques S, Casimiro T, Aguiar-Ricardo A, Sotomayor J, Caldeira J, Santos C, Dionísio M (2007) Characterization of a nematic mixture by reversed-phase hplc and uv spectroscopy: application to phase behavior studies in liquid crystal-co2 systems. Liq Crys 34(5):591–597

    Google Scholar 

  125. Maschke U, Benmouna M, Coqueret X (2002) Electro-optical properties of polymer-dispersed liquid crystals macromol. Rapid Commun 23:159

    CAS  Google Scholar 

  126. Viciosa MT, Nunes AM, Fernandes A, Almeida PL, Godinho MH, Dionisio M (2002) Dielectric studies of the nematic mixture e7 on a hydroxypropylcellulose substrate liq. Cryst 29:429

    CAS  Google Scholar 

  127. Brás AR, Dionísio M, Huth H, Schick Ch, Schönhals A (2007) The origin of glassy dynamics in a liquid crystal studied by broadband dielectric and thermal spectroscopy. Phys Rev E 75:061708

    Google Scholar 

  128. Brás AR, Viciosa MT, Dias JC, Rodrigues C, Dionísio M (2006), Changes in molecular dynamics upon formation of a polymer dispersed liquid crystal. Phys Rev E 73 (6):061709 (1–11).

    Google Scholar 

  129. Zhong ZZ, Schuele DE, Gordon WL, Adamic KJ, Akins RB (1992) Dielectric properties of a pmma/e7 polymer-dispersed liquid crystal. J Polym Sci B: Polym Phys 30:1443–1449

    CAS  Google Scholar 

  130. Roussel F, Buisine JM, Mascchke U, Coqueret X (1998) Photopolymerization kinetics and phase behaviour of acrylate based polymer dispersed liquid crystals. Liq Cryst 24:555–561

    CAS  Google Scholar 

  131. Capaccioli S, Prevosto D, Bets A, Hanewald A, Pakula T (2007) Applications of the rheo-dielectric technique. J Non-Cryst Solids 353:4267–4272

    CAS  Google Scholar 

  132. Goodman LS, Gilman A (1990) The pharmacological bases of therapeutics, 8th edn. Pergamon Press, New York

    Google Scholar 

  133. Brás AR, Noronha JP, Antunes AMM, Cardoso MM, Schönhals A, Affouard F, Dionísio M, Correia NT (2008) Molecular motions in amorphous ibuprofen as studied by broadband dielectric spectroscopy. J Phys Chem B 112:11087–11099

    Google Scholar 

  134. Dudognon E, Danède F, Descamps M, Correia NT (2008) Evidence for a new crystalline phase of racemic ibuprofen. Pharm Res 25:2853–2858

    CAS  Google Scholar 

  135. Kudlik A, Tschirwitz C, Blochowicz T, Benkhof S, Rössler E (1998) Slow secondary relaxation in simple glass formers. J Non-Cryst Solids 235–237:406–411

    Google Scholar 

  136. Schönhals A (2003) Molecular dynamics in polymer model systems. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, Chap. 7

    Google Scholar 

  137. Böttcher CJF (1973) Theory of dielectric polarization, vol 1, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  138. Böttcher CJF, Bordewijk P (1978) Theory of dielectric polarization, vol 2. Elsevier, Amsterdam

    Google Scholar 

  139. Schönhals A, Kremer F (2003) Theory of dielectric relaxation. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, Chap. 1

    Google Scholar 

  140. Kremer F, Schönhals A (2003) The scaling of the dynamics of glasses and supercooled liquids. In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, Chap. 4

    Google Scholar 

  141. Affouard F, Correia NT (2010) Debye process in ibuprofen glass-forming liquid: insights from molecular dynamics simulation. J Phys Chem B 114:11397–11402

    CAS  Google Scholar 

Download references

Acknowledgments

M. Dionísio dedicates this chapter to J. J. Moura Ramos and G. Williams who introduce her in the dielectrics world. The authors deeply acknowledge the fruitful collaboration with Prof. Dr. Andreas Schönhals by the use of broadband dielectric equipment to investigate confined Ibuprofen and E7, being grateful by his deeply knowledge in this matter whose papers supports a significant part of the work here presented. Our collaboration started in 2006 in the framework of the PhD of A. R. Brás, which grant SFRH/BD/23829/2005 is also acknowledged. The authors also acknowledged the careful reading and revision of this chapter by Professor Friedrich Kremer. Financial support for the work here reported was provided through the projects PTDC/CTM//64288/2006 and PTDC/CTM/098979/2008 implemented within the framework of the Programme “Promover a Produção Científica, o Desenvolvimento Tecnológico e a Inovação 002: Investigação Científica e Tecnológica (3599-PPCDTI)” financed by Fundação para a Ciência e Tecnologia (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dionísio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dionísio, M., Correia, N.T., Brás, A.R. (2014). Molecular Mobility and Phase Transformations of Several Low Molecular Weight Glass Formers Confined to Nanoporous Silica Matrices. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_9

Download citation

Publish with us

Policies and ethics