Skip to main content

Rotational Diffusion of Guest Molecules Confined in Uni-directional Nanopores

  • Chapter
  • First Online:

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Broadband dielectric spectroscopy (BDS) is employed to study the rotational diffusion of Tris(2-ethylhexyl)phosphate (TEHP), a glass-former, and 4-heptyl-4\(^\prime \)-isothiocyanatobiphenyl (7BT), a liquid crystal, both confined in nanoporous silica membranes having uni-directional pores with diameters in the range 4–10.4 nm. It is observed that upon cooling, the glassy dynamics (\(\alpha \)-process) of TEHP is enhanced near the calorimetric glass transition. This confinement effect is attributed to a slight reduction in density of the liquid in the nanopores. The secondary \(\beta \)-relaxation in TEHP is however unaffected by the geometrical confinement. Silanization of the inner pore surfaces has no measurable effect on the mobility of the guest molecules. For the case of liquid crystal 7BT, two relaxation processes originating from librations about the molecule’s short (\(\delta \)-process) and long axes (\(\beta _{\text {LC}}\)-process) are observed. The former becomes suppressed with decreasing pore diameter, while the latter is nearly unaffected with a tendency to become faster with decreasing pore diameter, an effect caused by orientational ordering due to geometrical constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BDS:

Broadband dielectric spectroscopy

TEHP:

Tris(2-ethylhexyl)phosphate

7BT:

4-heptyl-4\(^\prime \)-isothiocyanatobiphenyl

NMR:

Nuclear magnetic resonance

DSC:

Differential scanning calorimetry

MWS:

Maxwell–Wagner–Sillars

LCs:

Liquid crystals

SmE:

Smectic E

HF:

Hydrofluoric acid

Si:

Silicon

pSi:

Porous silicon

pSiO\(_{2 }\) :

Porous silica

SEM:

Scanning electron micrograph

h:

Hour(s)

s:

Second(s)

HMDS:

Hexamethyldisilazane

FTIR:

Fourier transform infrared

HP:

Hewlett Packard

HN:

Havriliak–Negami

\(I\) :

Isotropic

N :

Nematic

S :

Smetic

RTD:

Relaxation time distribution

VFT:

Vogel–Fulcher–Tammann

T :

Temperature

\(T_{\text {g}}\) :

Glass transition temperature

DFT:

Density functional theory

NCS:

Isothiocyanate

Hz:

Hertz

References

  1. Crupi V, Magazù S, Majolino D, Maisano G, Migliardo P (1999) Dynamical response and H-bond effects in confined liquid water. J Mol Liq 80(2–3):133–147

    Article  CAS  Google Scholar 

  2. Patkowski A, Ruths T, Fischer EW (2003) Dynamics of supercooled liquids confined to the pores of sol–gel glass: a dynamic light scattering study. Phys Rev E 67(2):021501

    Article  CAS  Google Scholar 

  3. Morishige K, Nobuoka K (1997) X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41). J Chem Phys 107(17):6965–6969

    Article  CAS  Google Scholar 

  4. Crupi V, Majolino D, Migliardo P, Venuti V (2002) Neutron scattering study and dynamic properties of hydrogen-bonded liquids in mesoscopic confinement. 1. The water case. J Phys Chem B 106(42):10884–10894. doi:10.1021/jp020503m

    Article  CAS  Google Scholar 

  5. Luo R-S, Jonas J (2001) Raman scattering study of liquid ethylene glycol confined to nanoporous silica glasses. J Raman Spectrosc 32(11):975–978. doi:10.1002/jrs.786

    Article  CAS  Google Scholar 

  6. Stapf S, Kimmich R, Seitter RO (1995) Proton and deuteron field-cycling NMR relaxometry of liquids in porous glasses: evidence for Lévy–Walk statistics. Phys Rev Lett 75(15):2855–2858

    Article  CAS  Google Scholar 

  7. Brandani S, Ruthven DM, Kärger J (1995) Concentration dependence of self-diffusivity of methanol in NaX zeolite crystals. Zeolites 15(6):494–495

    Article  CAS  Google Scholar 

  8. Buntkowsky G, Breitzke H, Adamczyk A, Roelofs F, Emmler T, Gedat E, Grunberg B, Xu Y, Limbach H-H, Shenderovich I, Vyalikh A, Findenegg G (2007) Structural and dynamical properties of guest molecules confined in mesoporous silica materials revealed by NMR. Phys Chem Chem Phys 9(35):4843–4853. doi:10.1039/b707322d

    Article  CAS  Google Scholar 

  9. Li Y, Ishida H (2002) A differential scanning calorimetry study of the assembly of hexadecylamine molecules in the nanoscale confined space of silicate galleries. Chem Mater 14(3):1398–1404. doi:10.1021/cm0103747

    Article  CAS  Google Scholar 

  10. Elamin K, Jansson H, Kittaka S, Swenson J (2013) Different behavior of water in confined solutions of high and low solute concentrations. Phys Chem Chem Phys 15(42):18437–18444. doi:10.1039/c3cp51786a

    Article  CAS  Google Scholar 

  11. Farrer RA, Fourkas JT (2003) Orientational dynamics of liquids confined in nanoporous Sol-gel glasses studied by optical kerr effect spectroscopy. Acc Chem Res 36(8):605–612. doi:10.1021/ar0200302

    Article  CAS  Google Scholar 

  12. Loughnane BJ, Scodinu A, Fourkas JT (1999) Extremely slow dynamics of a weakly wetting liquid at a solid/liquid interface: CS2 confined in nanoporous glasses. J Phys Chem B 103(29):6061–6068. doi:10.1021/jp991176u

    Article  CAS  Google Scholar 

  13. Arndt M, Stannarius R, Gorbatschow W, Kremer F (1996) Dielectric investigations of the dynamic glass transition in nanopores. Phys Rev E: Stat Phys Plasmas Fluids Relat Interdisc Top 54(5):5377–5390

    Article  CAS  Google Scholar 

  14. Arndt M, Stannarius R, Groothues H, Hempel E, Kremer F (1997) Length scale of cooperativity in the dynamic glass transition. Phys Rev Lett 79(11):2077–2080

    Article  CAS  Google Scholar 

  15. Brás AR, Dionísio M, Schönhals, A (2008) Confinement and surface effects on the molecular dynamics of a nematic mixture investigated by dielectric relaxation spectroscopy. J Phys Chem B 112(28):8227–8235. doi:10.1021/jp802133e

  16. Brás AR, Frunza S, Guerreiro L, Fonseca IM, Corma A, Frunza L, Dionísio M, Schönhals A (2010) Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree. J Chem Phys 132(22):224508

    Google Scholar 

  17. Schönhals A, Goering H, Schick C, Frick B, Zorn R (2003) Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments. Eur Phys J E 12(1):173–178. doi:10.1140/epje/i2003-10036-4

    Article  Google Scholar 

  18. Schönhals A, Goering H, Schick C, Frick B, Zorn R (2004) Glass transition of polymers confined to nanoporous glasses. Colloid Polym Sci 282(8):882–891. doi:10.1007/s00396-004-1106-3

    Article  Google Scholar 

  19. Schönhals A, Goering H, Schick C, Frick B, Zorn R (2005) Polymers in nanoconfinement: What can be learned from relaxation and scattering experiments? J Non-Cryst Solids 351(33,36):2668–2677

    Google Scholar 

  20. Kremer F (2002) Dielectric spectroscopy, yesterday, today and tomorrow. J Non-Cryst Solids 305(1,3):1–9

    Google Scholar 

  21. Frunza L, Kosslick H, Pitsch I, Frunza S, Schönhals A (2005) Rotational fluctuations of water inside the nanopores of SBA-type molecular sieves. J Phys Chem B 109(18):9154–9159. doi:10.1021/jp044503t

    Article  CAS  Google Scholar 

  22. Sinha GP, Aliev FM (1998) Dielectric spectroscopy of liquid crystals in smectic, nematic, and isotropic phases confined in random porous media. Phys Rev E 58(2):2001–2010

    Article  CAS  Google Scholar 

  23. Streck C, Mel’nichenko YB, Richert R (1996) Dynamics of solvation in supercooled liquids confined to the pores of sol–gel glasses. Phys Rev B 53(9):5341

    Article  CAS  Google Scholar 

  24. Ryabov Ya, Gutina A, Arkhipov V, Feldman Y (2001) Dielectric relaxation of water absorbed in porous glass. J Phys Chem B 105(9):1845–1850

    Google Scholar 

  25. Prisk TR, Tyagi M, Sokol PE (2011) Dynamics of small-molecule glass formers confined in nanopores. J Chem Phys 134:114506(114501–114509)

    Google Scholar 

  26. Cerveny S, Mattsson J, Swenson J, Bergman R (2004) Relaxations of hydrogen-bonded liquids confined in two-dimensional vermiculite clay. J Phys Chem B 108(31):11596–11603. doi:10.1021/jp037346r

  27. Aliev FM, Nazario Z, Sinha GP (2002) Broadband dielectric spectroscopy of confined liquid crystals. J Non-Cryst Solids 305(1,3):218–225

    Google Scholar 

  28. Schönhals A, Frunza S, Frunza L, Unruh T, Frick B, Zorn R (2010) Vibrational and molecular dynamics of a nanoconfined liquid crystal. Eur Phys J Spec Top 189(1):251–255. doi:10.1140/epjst/e2010-01329-5

    Article  Google Scholar 

  29. Frunza L, Frunza S, Kosslick H, Schönhals A (2008) Phase behavior and molecular mobility of n-octylcyanobiphenyl confined to molecular sieves: dependence on the pore size. Phys Rev E 78(5):051701

    Article  Google Scholar 

  30. Cramer C, Cramer T, Arndt M, Kremer F, Naji L, Stannarius R (1997) NMR and dielectric studies of nano-confined nematic liquid crystals. Molecular crystals and liquid crystals science and technology. Mol Cryst Liq Cryst Sect A 303(1):209–217. doi:10.1080/10587259708039426

    Article  CAS  Google Scholar 

  31. Massalska-Arodz M, Gorbachev VY, Krawczyk J, Hartmann L, Kremer F (2002) Molecular dynamics of the liquid crystal 6O2OCB in nanopores. J Phys: Condens Matter 14(36):8435

    CAS  Google Scholar 

  32. Crawford GP, Ondris-Crawford R, Žumer S, Doane JW (1993) Anchoring and orientational wetting transitions of confined liquid crystals. Phys Rev Lett 70(12):1838–1841

    Article  CAS  Google Scholar 

  33. Kipnusu WK, Kossack W, Iacob C, Jasiurkowska M, Sangoro JR, Kremer F (2012) Molecular order and dynamics of tris(2-ethylhexyl)phosphate confined in uni-directional nanopores. In: Zeitschrift für Physikalische Chemie international journal of research in physical chemistry and chemical physics, vol 226(7–8), p 797

    Google Scholar 

  34. Iacob C, Sangoro JR, Kipnusu WK, Valiullin R, Karger J, Kremer F (2012) Enhanced charge transport in nano-confined ionic liquids. Soft Matter 8(2):289–293. doi:10.1039/c1sm06581e

    Article  CAS  Google Scholar 

  35. Jasiurkowska M, Kossack W, Ene R, Iacob C, Kipnusu WK, Papadopoulos P, Sangoro JR, Massalska-Arodz M, Kremer F (2012) Molecular dynamics and morphology of confined 4-heptyl-4\(^\prime \)-isothiocyanatobiphenyl liquid crystals. Soft Matter 8(19):5194–5200. doi:10.1039/c2sm07258k

  36. Richert R (2010) Dielectric spectroscopy and dynamics in confinement. Eur Phys J Spec Top 189(1):37–46. doi:10.1140/epjst/e2010-01308-x

    Article  CAS  Google Scholar 

  37. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  38. Richert R (2011) Dynamics of nanoconfined supercooled liquids. Ann Rev Phys Chem 62:65–84

    Article  CAS  Google Scholar 

  39. Cordoyiannis G, Zidanšek A, Lahajnar G, Kutnjak Z, Amenitsch H, Nounesis G, Kralj S (2009) Influence of confinement in controlled-pore glass on the layer spacing of smectic-A liquid crystals. Phys Rev E 79(5):051703

    Article  Google Scholar 

  40. Kutnjak Z, Kralj S, Lahajnar G, Žumer S (2004) Influence of finite size and wetting on nematic and smectic phase behavior of liquid crystal confined to controlled-pore matrices. Phys Rev E 70(5):051703

    Article  Google Scholar 

  41. Bellini T, Radzihovsky L, Toner J, Clark NA (2001) Universality and scaling in the disordering of a smectic liquid crystal. Science 294(5544):1074–1079. doi:10.1126/science.1057480

    Article  CAS  Google Scholar 

  42. Guégan R, Morineau D, Loverdo C, Béziel W, Guendouz M (2006) Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon. Phys Rev E 73(1):011707

    Article  Google Scholar 

  43. Kityk AV, Wolff M, Knorr K, Morineau D, Lefort R, Huber P (2008) Continuous paranematic-to-nematic ordering transitions of liquid crystals in tubular silica nanochannels. Phys Rev Lett 101(18):187801

    Article  Google Scholar 

  44. Chahine G, Kityk AV, Knorr K, Lefort R, Guendouz M, Morineau D, Huber P (2010) Criticality of an isotropic-to-smectic transition induced by anisotropic quenched disorder. Phys Rev E 81(3):031703

    Article  Google Scholar 

  45. Clark NA, Bellini T, Malzbender RM, Thomas BN, Rappaport AG, Muzny CD, Schaefer DW, Hrubesh L (1993) X-ray scattering study of smectic ordering in a silica aerogel. Phys Rev Lett 71(21):3505–3508

    Article  CAS  Google Scholar 

  46. Nambiar DC, Gaudh JS, Shinde VM (1994) Tris(2-ethylhexyl)phosphate as an extractant for trivalent gallium, indium and thallium. Talanta 41(11):1951–1955

    Google Scholar 

  47. Rizos AK, Petihakis L, Ngai KL, Wu J, Yee AF (1999) A dielectric relaxation study of the \(\gamma \)-relaxation in tetramethylbisphenol A polycarbonate plasticized by tris(2-ethylhexyl) phosphate. Macromolecules 32(23):7921–7924. doi:10.1021/ma980204o

    Article  CAS  Google Scholar 

  48. Katsu T, Ido K, Kataoka K (2002) Poly(vinyl chloride) membrane electrode for a stimulant, phentermine, using tris(2-ethylhexyl) phosphate as a solvent mediator. Sens Actuators B: Chem 81(2–3):267–272

    Article  CAS  Google Scholar 

  49. Ueda K, Rei Y, Komagoe K, Masuda K, Hanioka N, Narimatsu S, Katsu T (2006) Tris(2-ethylhexyl)phosphine oxide as an effective solvent mediator for constructing a serotonin-selective membrane electrode. Anal Chim Acta 565(1):36–41

    Google Scholar 

  50. Feng JK, Sun XJ, Ai XP, Cao YL, Yang HX (2008) Dimethyl methyl phosphate: a new nonflammable electrolyte solvent for lithium-ion batteries. J Power Sources 184(2):570–573

    Google Scholar 

  51. Lalia BS, Fujita T, Yoshimoto N, Egashira M, Morita M (2009) Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate. J Power Sources 186(1):211–215

    Google Scholar 

  52. Czupryński K, Januszko A (1992) Preparation of nematic mixtures from smectic compounds. Molecular crystals and liquid crystals science and technology. Mol Cryst Liq Cryst Sect A 215(1):199–204. doi:10.1080/10587259208038525

    Article  Google Scholar 

  53. Czupryński K (1990) Phase diagrams of mixtures consisting of polar compounds SE and SA d. Mol Cryst Liq Cryst Incorporating Nonlinear Opt 192(1):47–52. doi:10.1080/00268949008035604

    Article  Google Scholar 

  54. Jasiurkowska M, Ściesiński J, Czub J, Massalska-Arodź M, Pełka R, Juszyńska E, Yamamura Y, Saito K (2009) Infrared spectroscopic and X-ray studies of the 4-Propyl-4-n-alkyl-4\(^\prime \) isothiocyanatobiphenyl (nTCB). J Phys Chem B 113(21):7435–7442. doi:10.1021/jp901339c

    Article  CAS  Google Scholar 

  55. Jasiurkowska M, Budziak A, Czub J, Massalska-Arodź M, Urban S (2008) X-ray studies on the crystalline E phase of the 4-n-alkyl-4\(^\prime \)-isothiocyanatobiphenyl homologous series (nBT, n = 2–10). Liq Cryst 35(4):513–518. doi:10.1080/02678290801989975

    Article  CAS  Google Scholar 

  56. Jasiurkowska M, Zieliński PM, Massalska-Arodź M, Yamamura Y, Saito K (2011) Study of polymorphism of 4-Hexyl-4\(^\prime \)-isothiocyanatobiphenyl by complementary methods. J Phys Chem B 115(43):12327–12335. doi:10.1021/jp201936x

    Article  CAS  Google Scholar 

  57. Beale MIJ, Benjamin JD, Uren MJ, Chew NG, Cullis AG (1985) An experimental and theoretical study of the formation and microstructure of porous silicon. J Cryst Growth 73(3):622–636

    Article  CAS  Google Scholar 

  58. Smith RL, Collins SD (1992) Porous silicon formation mechanisms. J Appl Phys 71(8):R1–R22. doi:10.1063/1.350839

    Article  CAS  Google Scholar 

  59. Lehmann V, Gösele U (1991) Porous silicon formation: a quantum wire effect. Appl Phys Lett 58(8):856–858

    Article  CAS  Google Scholar 

  60. Zhang G (2006) Porous silicon: morphology and formation mechanisms. In: Vayenas CG, White R, Gamboa-Adelco M (eds) Modern aspects of electrochemistry, vol 39. Springer, US, pp 65–133

    Google Scholar 

  61. Zhang XG, Collins SD, Smith RL (1989) Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution. J Electrochem Soc 136(5):1561–1565. doi:10.1149/1.2096961

    Article  CAS  Google Scholar 

  62. Valiullin R, Khokhlov A (2006) Orientational ordering of linear n -alkanes in silicon nanotubes. Phys Rev E 73(5):051605

    Article  Google Scholar 

  63. Johari GP, Andersson O (2006) On the nonlinear variation of dc conductivity with dielectric relaxation time. J Chem Phys 125(12):124501

    Google Scholar 

  64. Demus D, Goodby J, Gray GW, Spiess HW (1998) Handbook of liquid crystals: fundamentals, vol 1. Wiley-VCH, New York

    Book  Google Scholar 

  65. Donth E-J (2001) The glass transition: relaxation dynamics in liquids and disordered materials. In: Hull R, Jagadish C, Osgood RM, Parisi J, Wang ZM, Uchida S-I (eds), vol 48. Springer series in materials science. Springer, Heidelberg

    Google Scholar 

  66. Floudas G, Mpoukouvalas K, Papadopoulos P (2006) The role of temperature and density on the glass-transition dynamics of glass formers. J Chem Phys 124(7):74905

    Google Scholar 

  67. Thomas JA, McGaughey AJH (2008) Density, distribution, and orientation of water molecules inside and outside carbon nanotubes. J Chem Phys 128(8):084715

    Google Scholar 

  68. Shi W, Sorescu DC (2010) Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide (hmim[Tf2N]) confined in carbon nanotubes. J Phys Chem B 114(46):15029–15041. doi:10.1021/jp106500p

    Article  CAS  Google Scholar 

  69. Kawasaki T, Takeaki A, Tanaka H (2007) Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys Rev Lett 99(21):215701

    Google Scholar 

  70. Spiess HW (2010) Interplay of structure and dynamics in macromolecular and supramolecular systems. Macromolecules 43(13):5479–5491. doi:10.1021/ma1005952

    Article  CAS  Google Scholar 

  71. Stenzel O (2005) The physics of thin film optical spectra. Springer, Berlin

    Google Scholar 

  72. Urban S, Czuprynski K, Da̧browski R, Gestblom B, Janik J, Kresse H, Schmalfuss H (2001) Dielectric studies of the 4-n-alkyl-4\(^\prime \)-thiocyanatobiphenyl (nBT) homologous series (n=2-10) in the isotropic and E phases. Liq Cryst 28(5):691–696. doi:10.1080/02678290010023343

  73. Różańskia SA, Kremer F, Groothues H, Stannarius R (1997) The dielectric properties of nematic liquid crystal, 5CB confined to treated and untreated anopore membranes. Molecular crystals and liquid crystals science and technology. Mol Cryst Liq Cryst Sect A 303(1):319–324. doi:10.1080/10587259708039441

    Article  Google Scholar 

  74. Iannacchione GS, Crawford GP, Qian S, Doane JW, Finotello D, Zumer S (1996) Nematic ordering in highly restrictive Vycor glass. Phys Rev E 53(3):2402–2411

    Article  CAS  Google Scholar 

  75. Ziherl P, Vilfan M, Vrbancic-Kopac N, Žumer S, Ondris-Crawford RJ, Crawford GP (2000) Substrate-induced order in the isotropic phase of a smectogenic liquid crystal: a deuteron NMR study. Phys Rev E 61(3):2792–2798

    Google Scholar 

  76. Lefort R, Morineau D, Guégan R, Guendouz M, Zanotti J-M, Frick B (2008) Relation between static short-range order and dynamic heterogeneities in a nanoconfined liquid crystal. Phys Rev E 78(4):040701

    Article  Google Scholar 

  77. Sinha G, Leys J, Glorieux C, Thoen J (2005) Dielectric spectroscopy of aerosil-dispersed liquid crystal embedded in Anopore membranes. Phys Rev E 72(5):051710

    Article  CAS  Google Scholar 

  78. Rozanski SA, Stannarius R, Groothues H, Kremer F (1996) Dielectric properties of the nematic liquid crystal 4-n-pentyl-4\(^\prime \)-cyanobiphenyl in porous membranes. Liq Cryst 20(1):59–66. doi:10.1080/02678299608032027

Download references

Acknowledgments

Financial support by the DFG (Germany), within IRTG “Diffusion in Porous Materials,” SFB/TRR 102 within the project “Polymers Under Multiple Constrains,” Alexander von Humboldt Foundation and Leipzig School of Natural Sciences, “Building with Molecules and Nano-Objects” (BuildMoNa) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wycliffe K. Kipnusu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kipnusu, W.K., Iacob, C., Jasiurkowska-Delaporte, M., Kossack, W., Sangoro, J.R., Kremer, F. (2014). Rotational Diffusion of Guest Molecules Confined in Uni-directional Nanopores. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_5

Download citation

Publish with us

Policies and ethics