Skip to main content

Molecular Dynamics of Poly(cis-1,4-Isoprene) in 1- and 2-Dimensional Confinement

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Broadband Dielectric Spectroscopy (BDS)—in combination with a nanostructured electrode arrangement—is employed to study thin layers of poly(cis-1,4-isoprene) (PI). PI is further probed in the 2D confining space of Anodic Aluminum Oxide (AAO) nanopores. Being a type A polymer, PI presents an unrivaled opportunity to investigate two distinct relaxation modes taking place at two different length scales: the segmental motion (corresponding to the dynamic glass transition) which involves structures of about one nanometer in size, and the so-called normal mode which represents the global dynamics of the chain. We report that while the structural relaxation shows no dependence on either layer thickness or molecular weight, the normal mode—actually the fluctuation of the end-to-end vector of the unperturbed chain—is dramatically influenced by confinement: (i) its relaxation strength is layer-thickness-dependent; (ii) for PI having a molecular weight \(M_\mathrm{w}\) comparable to \(M_\mathrm{c}\) (i.e. the critical molecular weight below which Rouse dynamics dominate), the mean spectral position does not shift with layer thickness, (iii) in contrast, when \(M_\mathrm{w} > M_\mathrm{c}\), the relaxation strength and rate of the normal mode respond to the confinement; (iv) it is demonstrated—for the first time—that the concentration of the mother solution from which the thin layers are spin-cast has an impact on the chain dynamics; and (v) the extent by which the normal mode is affected depends on the dimensionality of confinement. Overall, these results show that while the chain dynamics are altered in a manifold of ways (due, for instance, to interactions with the confining surface), the structural relaxation retains most of its bulk-like nature. The latter observation is due to the fact that the length scale underlying the dynamic glass transition is less than a nanometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    CAS  Google Scholar 

  2. Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett 27:59–64

    CAS  Google Scholar 

  3. Keddie JL, Jones RAL, Cory RA (1994) Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss 98:219–230

    CAS  Google Scholar 

  4. Forrest JA, Dalnoki-Veress K, Dutcher JR (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56:5705–5716

    CAS  Google Scholar 

  5. Grohens Y, Brogly M, Labbe C, David M-O, Schultz J (1998) Glass transition of stereoregular poly (methyl methacrylate) at interfaces. Langmuir 14:2929–2932

    CAS  Google Scholar 

  6. Fryer DS, Nealey PF, de Pablo JJ (2000) Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules 33:6439–6447

    CAS  Google Scholar 

  7. Dalnoki-Veress K, Forrest J, Murray C, Gigault C, Dutcher J (2001) Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Phys Rev E 63:031801

    CAS  Google Scholar 

  8. Fryer DS, Peters RD, Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF et al (2001) Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34:5627–5634

    CAS  Google Scholar 

  9. Kawana S, Jones R (2001) Character of the glass transition in thin supported polymer films. Phys Rev E 63:0215011–0215016

    Google Scholar 

  10. Tsui OKC, Zhang HF (2001) Effects of chain ends and chain entanglement on the glass transition temperature of polymer thin films. Macromolecules 34:9139–9142

    CAS  Google Scholar 

  11. Grohens Y, Hamon L, Reiter G, Soldera A, Holl Y (2002) Some relevant parameters affecting the glass transition of supported ultra-thin polymer films. Eur Phys J E: Soft Matter 8:217–224

    CAS  Google Scholar 

  12. Xie F, Zhang HF, Lee FK, Du B, Tsui OKC, Yokoe Y et al (2002) Effect of low surface energy chain ends on the glass transition temperature of polymer thin films. Macromolecules 35:1491–1492

    CAS  Google Scholar 

  13. Sharp J, Forrest J (2003) Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett 91:2357011–2357014

    Google Scholar 

  14. Sharp J, Forrest J (2003) Dielectric and ellipsometric studies of the dynamics in thin films of isotactic poly(methylmethacrylate) with one free surface. Phys Rev E 67:0318051–0318059

    Google Scholar 

  15. D’Amour J (2004) Influence of substrate chemistry on the properties of ultrathin polymer films. Microelectron Eng 73–74:209–217

    Google Scholar 

  16. Fakhraai Z, Sharp JS, Forrest JA (2004) Effect of sample preparation on the glass-transition of thin polystyrene films. J Polym Sci Part B: Polym Phys 42:4503–4507

    CAS  Google Scholar 

  17. Singh L, Ludovice PJ, Henderson CL (2004) Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 449:231–241

    CAS  Google Scholar 

  18. Fakhraai Z, Forrest J (2005) Probing slow dynamics in supported thin polymer films. Phys Rev Lett 95:025701

    Google Scholar 

  19. Roth CB, Pound A, Kamp SW, Murray CA, Dutcher JR (2006) Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films. Eur Phys J E 20:441–448

    CAS  Google Scholar 

  20. Raegen AN, Massa MV, Forrest JA, Dalnoki-Veress K (2008) Effect of atmosphere on reductions in the glass transition of thin polystyrene films. Eur Phys J E 27:375–377

    CAS  Google Scholar 

  21. Inoue R, Kanaya T, Nishida K, Tsukushi I, Telling M, Gabrys B et al (2009) Glass transition and molecular mobility in polymer thin films. Phys Rev E 80:031802

    CAS  Google Scholar 

  22. Kim S, Hewlett SA, Roth CB, Torkelson JM (2009) Confinement effects on glass transition temperature, transition breadth, and expansivity: comparison of ellipsometry and fluorescence measurements on polystyrene films. Eur Phys J E 30:83–92

    CAS  Google Scholar 

  23. Lu H, Chen W, Russell TP (2009) Relaxation of thin films of polystyrene floating on ionic liquid surface. Macromolecules 42:9111–9117

    CAS  Google Scholar 

  24. Mapesa EU, Erber M, Tress M, Eichhorn K-J, Serghei A, Voit B et al (2010) Glassy dynamics in nanometer thin layers of polystyrene. Eur Phys J Spec Top 189:173–180

    CAS  Google Scholar 

  25. Tress M, Erber M, Mapesa EU, Huth H, Müller J, Serghei A et al (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43:9937–9944

    CAS  Google Scholar 

  26. Erber M, Tress M, Mapesa EU, Serghei A, Eichhorn K-J, Voit B et al (2010) Glassy dynamics and glass transition in thin polymer layers of pmma deposited on different substrates. Macromolecules 43:7729–7733

    CAS  Google Scholar 

  27. Clough A, Peng D, Yang Z, Tsui OKC (2011) Glass transition temperature of polymer films that slip. Macromolecules 44:1649–1653

    CAS  Google Scholar 

  28. Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular architecture on the vitrification of polymer thin films. Phys Rev Lett 106:128301

    Google Scholar 

  29. Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109:055701

    Google Scholar 

  30. Pye JE, Roth CB (2011) Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys Rev Lett 107:235701

    Google Scholar 

  31. Reiter G (1994) Dewetting as a probe of polymer mobility in thin films. Macromolecules 27:3046–3052

    CAS  Google Scholar 

  32. Wallace WE, Van Zanten JH, Wu WL (1995) Influence of an impenetrable interface on a polymer glass-transition temperature. Phys Rev E 52:R3329–R3332

    CAS  Google Scholar 

  33. Tsui OKC, Russell TP, Hawker CJ (2001) Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34:5535–5539

    CAS  Google Scholar 

  34. Inoue R, Kanaya T, Miyazaki T, Nishida K, Tsukushi I, Shibata K (2006) Glass transition and thermal expansivity of polystyrene thin films. Mater Sci Eng: A 442:367–370

    Google Scholar 

  35. Miyazaki T, Inoue R, Nishida K, Kanaya T (2007) X-ray reflectivity studies on glass transition of free standing polystyrene thin films. Eur Phys J Spec Top 141:203–206

    Google Scholar 

  36. Kanaya T, Inoue R, Kawashima K, Miyazaki T, Tsukushi I, Shibata K et al (2009) Glassy dynamics and heterogeneity of polymer thin films. J Phys Soc Jpn 78:041004

    Google Scholar 

  37. Tate RS, Fryer DS, Pasqualini S, Montague MF, de Pablo JJ, Nealey PF (2001) Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J Chem Phys 115:9982

    CAS  Google Scholar 

  38. Fukao K, Miyamoto Y (2001) Slow dynamics near glass transitions in thin polymer films. Phys Rev E 64:0118031–01180319

    Google Scholar 

  39. Efremov MY, Olson E, Zhang M, Zhang Z, Allen L (2003) Glass transition in ultrathin polymer films: calorimetric study. Phys Rev Lett 91:0857031–0857034

    Google Scholar 

  40. Efremov MY, Olson EA, Zhang M, Zhang Z, Allen LH (2004) Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules 37:4607–4616

    CAS  Google Scholar 

  41. Koh YP, McKenna GB, Simon SL (2006) Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci Part B: Polym Phys 44:3518–3527

    CAS  Google Scholar 

  42. Koh YP, Simon SL (2008) Structural relaxation of stacked ultrathin polystyrene films. J Polym Sci Part B: Polym Phys 46:2741–2753

    CAS  Google Scholar 

  43. Bernazzani P, Sanchez RF (2009) Structural and thermal behavior of polystyrene thin films using ATR-FTIR-NanoDSC measurements. J Therm Anal Calorim 96:727–732

    CAS  Google Scholar 

  44. Fukao K, Terasawa T, Oda Y, Nakamura K, Tahara D (2011) Glass transition dynamics of stacked thin polymer films. Phys Rev E 84:041808

    Google Scholar 

  45. DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524–1527

    CAS  Google Scholar 

  46. Jean YC, Zhang R, Cao H, Yuan J-P, Huang C-M, Nielsen B et al (1997) Glass transition of polystyrene near the surface studied by slow-positron-annihilation spectroscopy. Phys Rev B 56:R8459

    CAS  Google Scholar 

  47. Lupaşcu V, Huth H, Schick C, Wübbenhorst M (2005) Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta 432:222–228

    Google Scholar 

  48. Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci Part B: Polym Phys 44:2996–3005

    CAS  Google Scholar 

  49. Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Top 141:153–160

    Google Scholar 

  50. Schick C (2010) Glass transition under confinement-what can be learned from calorimetry. Eur Phys J Spec Top 189:3–36

    CAS  Google Scholar 

  51. Ellison CJ, Torkelson JM (2002) Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels. J Polym Sci Part B: Polym Phys 40:2745–2758

    CAS  Google Scholar 

  52. Ellison CJ, Kim SD, Hall DB, Torkelson JM (2002) Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements. Eur Phys J E: Soft Matter 8:155–166

    CAS  Google Scholar 

  53. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700

    CAS  Google Scholar 

  54. Ellison C, Ruszkowski R, Fredin N, Torkelson J (2004) Dramatic reduction of the effect of nanoconfinement on the glass transition of polymer films via addition of small-molecule diluent. Phys Rev Lett 92:095702

    Google Scholar 

  55. Ellison CJ, Mundra MK, Torkelson JM (2005) Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scale. Macromolecules 38:1767–1778

    CAS  Google Scholar 

  56. Mundra MK, Ellison CJ, Behling RE, Torkelson JM (2006) Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymers: Sensing by intrinsic fluorescence. Polymer 47:7747–7759

    CAS  Google Scholar 

  57. Mundra MK, Ellison CJ, Rittigstein P, Torkelson JM (2007) Fluorescence studies of confinement in polymer films and nanocomposites: glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity. Eur Phys J Spec Top 141:143–151

    Google Scholar 

  58. Kim S, Roth CB, Torkelson JM (2008) Effect of nanoscale confinement on the glass transition temperature of free-standing polymer films: novel, self-referencing fluorescence method. J Polym Sci Part B: Polym Phys 46:2754–2764

    CAS  Google Scholar 

  59. Kim S, Torkelson JM (2011) Distribution of glass transition temperatures in free-standing. Nanoconfined polystyrene films: a test of de Gennes’ sliding motion mechanism. Macromolecules 44:4546–4553

    CAS  Google Scholar 

  60. Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc 133:8444–8447

    CAS  Google Scholar 

  61. Paeng K, Ediger MD (2011) Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4- tert -butylstyrene), poly(\(\alpha \)-methylstyrene), and poly(2-vinylpyridine). Macromolecules 44:7034–7042

    CAS  Google Scholar 

  62. Paeng K, Lee H-N, Swallen SF, Ediger MD (2011) Temperature-ramping measurement of dye reorientation to probe molecular motion in polymer glasses. J Chem Phys 134:024901

    Google Scholar 

  63. Paeng K, Richert R, Ediger MD (2012) Molecular mobility in supported thin films of polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) probed by dye reorientation. Soft Matter 8:819–826

    CAS  Google Scholar 

  64. Kanaya T, Miyazaki T, Watanabe H, Nishida K, Yamano H, Tasaki S et al (2003) Annealing effects on thickness of polystyrene thin films as studied by neutron reflectivity. Polymer 44:3769–3773

    CAS  Google Scholar 

  65. Inoue R, Kawashima K, Matsui K, Kanaya T, Nishida K, Matsuba G et al (2011) Distributions of glass-transition temperature and thermal expansivity in multilayered polystyrene thin films studied by neutron reflectivity. Phys Rev E 83:021801

    Google Scholar 

  66. Inoue R, Kawashima K, Matsui K, Nakamura M, Nishida K, Kanaya T et al (2011) Interfacial properties of polystyrene thin films as revealed by neutron reflectivity. Phys Rev E 84:031802

    Google Scholar 

  67. Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77:2002–2005

    CAS  Google Scholar 

  68. Forrest JA, Mattsson J (2000) Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics. Phys Rev E 61:R53–R56

    CAS  Google Scholar 

  69. Mattsson J, Forrest JA, Börjesson L (2000) Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys Rev E 62:5187

    CAS  Google Scholar 

  70. Cheng W, Sainidou R, Burgardt P, Stefanou N, Kiyanova A, Efremov M et al (2007) Elastic properties and glass transition of supported polymer thin films. Macromolecules 40:7283–7290

    CAS  Google Scholar 

  71. Akabori K, Tanaka K, Kajiyama T, Takahara A (2003) Anomalous surface relaxation process in polystyrene ultrathin films. Macromolecules 36:4937–4943

    CAS  Google Scholar 

  72. Akabori K, Tanaka K, Nagamura T, Takahara A, Kajiyama T (2005) Molecular motion in ultrathin polystyrene films: dynamic mechanical analysis of surface and interfacial effects. Macromolecules 38:9735–9741

    CAS  Google Scholar 

  73. Akabori K-I, Tanaka K, Takahara A, Kajiyama T, Nagamura T (2007) Substrate effect on mechanical relaxation of polystyrene in ultrathin films. Eur Phys J Spec Top 141:173–180

    Google Scholar 

  74. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C et al (2000) Shear modulation force microscopy study of near surface glass transition temperatures. Phys Rev Lett 85:2340–2343

    CAS  Google Scholar 

  75. Dinelli F, Ricci A, Sgrilli T, Baschieri P, Pingue P, Puttaswamy M et al (2011) Nanoscale viscoelastic behavior of the surface of thick polystyrene films as a function of temperature. Macromolecules 44:987–992

    CAS  Google Scholar 

  76. O’Connell PA (2005) Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307:1760–1763

    Google Scholar 

  77. O’Connell PA, McKenna GB (2006) Dramatic stiffening of ultrathin polymer films in the rubbery regime. Eur Phys J E 20:143–150

    Google Scholar 

  78. O’Connell PA, McKenna GB (2007) Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films. Rev Sci Instrum 78:013901

    Google Scholar 

  79. O’Connell PA, Hutcheson SA, McKenna GB (2008) Creep behavior of ultra-thin polymer films. J Polym Sci Part B: Polym Phys 46:1952–1965

    Google Scholar 

  80. O’Connell PA, McKenna GB (2008) A novel nano-bubble inflation method for determining the viscoelastic properties of ultrathin polymer films. Scanning 30:184–196

    Google Scholar 

  81. Bodiguel H, Fretigny C (2007) Viscoelastic properties of ultrathin polystyrene films. Macromolecules 40:7291–7298

    CAS  Google Scholar 

  82. Yang Z, Peng D, Clough A, Lam C-H, Tsui OKC (2010) Is the dynamics of polystyrene films consistent with their glass transition temperature? Eur Phys J Spec Top 189:155–164

    CAS  Google Scholar 

  83. Wang J, McKenna GB (2013) Viscoelastic and glass transition properties of ultrathin polystyrene films by dewetting from liquid glycerol. Macromolecules 46:2485–2495

    CAS  Google Scholar 

  84. Prucker O, Christian S, Bock H, Rühe J, Frank WC, Knoll W (1998) On the glass transition in ultrathin polymer films of different molecular architecture. Macromol Chem Phys 199:1435–1444

    CAS  Google Scholar 

  85. Fukao K, Miyamoto Y (1999) Glass transition temperature and dynamics of \(\alpha \)-process in thin polymer films. Europhys Lett 46:649–654

    CAS  Google Scholar 

  86. Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E 61:1743–1754

    CAS  Google Scholar 

  87. Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H (2002) Relaxation dynamics in thin supported polymer films. J Non-Cryst Solids 307–310:517–523

    Google Scholar 

  88. Serghei A, Huth H, Schellenberger M, Schick C, Kremer F (2005) Pattern formation in thin polystyrene films induced by an enhanced mobility in ambient air. Phys Rev E 71:0618011–0618014

    Google Scholar 

  89. Lupaşcu V, Picken SJ, Wübbenhorst M (2006) Cooperative and non-cooperative dynamics in ultra-thin films of polystyrene studied by dielectric spectroscopy and capacitive dilatometry. J Non-Cryst Solids 352:5594–5600

    Google Scholar 

  90. Serghei A, Kremer F (2006) Unexpected preparative effects on the properties of thin polymer films. Prog Colloid Polym Sci 132:33–40

    CAS  Google Scholar 

  91. Napolitano S, Wübbenhorst M (2007) Dielectric signature of a dead layer in ultrathin films of a nonpolar polymer. J Phys Chem B 111:9197–9199

    CAS  Google Scholar 

  92. Priestley R, Broadbelt L, Torkelson J, Fukao K (2007) Glass transition and \(\alpha \)-relaxation dynamics of thin films of labeled polystyrene. Phys Rev E 75:061806

    Google Scholar 

  93. Svanberg C (2007) Glass transition relaxations in thin suspended polymer films. Macromolecules 40:312–315

    CAS  Google Scholar 

  94. Serghei A, Huth H, Schick C, Kremer F (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41:3636–3639

    CAS  Google Scholar 

  95. Serghei A, Kremer F (2008) Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol Chem Phys 209:810–817

    CAS  Google Scholar 

  96. Rotella C, Napolitano S, Wübbenhorst M (2009) Segmental mobility and glass transition temperature of freely suspended ultrathin polymer membranes. Macromolecules 42:1415–1417

    Google Scholar 

  97. Napolitano S, Wübbenhorst M (2010) Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 51:5309–5312

    CAS  Google Scholar 

  98. Rotella C, Napolitano S, De Cremer L, Koeckelberghs G, Wübbenhorst M (2010) Distribution of segmental mobility in ultrathin polymer films. Macromolecules 43:8686–8691

    CAS  Google Scholar 

  99. Napolitano S, Rotella C, Wübbenhorst M (2011) Is the reduction in tracer diffusivity under nanoscopic confinement related to a frustrated segmental mobility? Macromol Rapid Commun 32:844–848

    CAS  Google Scholar 

  100. Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260–267

    Google Scholar 

  101. Boucher VM, Cangialosi D, Yin H, Schönhals A, Alegría A, Colmenero J (2012) Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8:5119–5122

    CAS  Google Scholar 

  102. Boucher VM, Cangialosi D, Alegría A, Colmenero J (2012) Time dependence of the segmental relaxation time of poly(vinyl acetate)-silica nanocomposites. Phys Rev E 86:041501

    Google Scholar 

  103. Kremer F, Hartmann L, Serghei A, Pouret P, Leger L (2003) Molecular dynamics in thin grafted and spin-coated polymer layers. Eur Phys J E: Soft Matter 12:139–142

    CAS  Google Scholar 

  104. Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M et al (2013) Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter 9:10592

    CAS  Google Scholar 

  105. Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer coils. Science 341:1371–1374

    CAS  Google Scholar 

  106. Fukao K (2003) Dynamics in thin polymer films by dielectric spectroscopy. Eur Phys J E: Soft Matter 12:119–125

    CAS  Google Scholar 

  107. Karasz FE, MacKnight WJ (1968) The influence of stereoregularity on the glass transition temperatures of vinyl polymers. Macromolecules 1:537–540

    CAS  Google Scholar 

  108. Nguyen HK, Labardi M, Capaccioli S, Lucchesi M, Rolla P, Prevosto D (2012) Interfacial and annealing effects on primary \(\alpha \)-relaxation of ultrathin polymer films investigated at nanoscale. Macromolecules 45:2138–2144

    CAS  Google Scholar 

  109. Nguyen HK, Labardi M, Lucchesi M, Rolla P, Prevosto D (2013) Plasticization in ultrathin polymer films: the role of supporting substrate and annealing. Macromolecules 46:555–561

    CAS  Google Scholar 

  110. van Zanten JH, Wallace WE, Wu W (1996) Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. Phys Rev E 53:R2053

    Google Scholar 

  111. Serghei A (2008) Challenges in glassy dynamics of polymers. Macromol Chem Phys 209:1415–1423

    CAS  Google Scholar 

  112. Petychakis L, Floudas G, Fleischer G (1997) Chain dynamics of polyisoprene confined in porous media. A dielectric spectroscopy study. Europhys Lett 40:685–690

    CAS  Google Scholar 

  113. Adachi K, Kotaka T (1985) Dielectric normal mode process in undiluted cis-polyisoprene. Macromolecules 18:466–472

    CAS  Google Scholar 

  114. Liu Y, Russell TP, Samant MG, Stöhr J, Brown HR, Cossy-Favre A et al (1997) Surface relaxations in polymers. Macromolecules 30:7768–7771

    CAS  Google Scholar 

  115. Serghei A, Kremer F, Kob W (2003) Chain conformation in thin polymer layers as revealed by simulations of ideal random walks. Eur Phys J E: Soft Matter 12:143–146

    CAS  Google Scholar 

  116. Serghei A, Kremer F (2003) Confinement-induced relaxation process in thin films of cis-polyisoprene. Phys Rev Lett 91:1657021–1657024

    Google Scholar 

  117. Labahn D, Mix R, Schönhals A (2009) Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E 79:01108011–01108018

    Google Scholar 

  118. Kojio K, Jeon S, Granick S (2002) Confinement-induced differences between dielectric normal modes and segmental modes of an ion-conducting polymer. Eur Phys J E: Soft Matter 8:167–173

    CAS  Google Scholar 

  119. Jeon S, Granick S (2001) A polymer’s dielectric normal modes depend on its film thickness when confined between nonwetting surfaces. Macromolecules 34:8490–8495

    CAS  Google Scholar 

  120. Holt AP, Sangoro JR, Wang Y, Agapov AL, Sokolov AP (2013) Chain and segmental dynamics of poly(2-vinylpyridine) nanocomposites. Macromolecules 46:4168–4173

    CAS  Google Scholar 

  121. Stockmayer WH (1967) Dielectric dispersion in solutions of flexible polymers. Pure Appl Chem 15:539–554

    Google Scholar 

  122. Boese D, Kremer F (1990) Molecular dynamics in bulk cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules 23:829–835

    CAS  Google Scholar 

  123. Cole RH (1965) Correlation function theory of dielectric relaxation. J Chem Phys 42:637

    CAS  Google Scholar 

  124. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    CAS  Google Scholar 

  125. Williams G (1972) Use of the dipole correlation function in dielectric relaxation. Chem Rev 72:55–69

    CAS  Google Scholar 

  126. Adachi K, Kotaka T (1988) Dielectric normal mode process in semidilute and concentrated solutions of cis-polyisoprene. Macromolecules 21:157–164

    CAS  Google Scholar 

  127. Williams G, Cook M, Hains PJ (1972) Molecular motion in amorphous polymers. Consideration of the mechanism for \(\alpha \), \(\beta \) and (\(\alpha \beta )\) dielectric relaxations. J Chem Soc Faraday Trans 2(68):1045–1050

    Google Scholar 

  128. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272

    CAS  Google Scholar 

  129. Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity. Flow birefringence and dielectric Loss. J Chem Phys 24:269

    CAS  Google Scholar 

  130. de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572

    Google Scholar 

  131. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state. J Chem Soc Faraday Trans 2(74):1789–1801

    Google Scholar 

  132. Hadjichristidis N, Roovers JEL (1974) Synthesis and solution properties of linear, four-branched, and six-branched star polyisoprenes. J Polym Sci: Polym Phys Ed 12:2521–2533

    CAS  Google Scholar 

  133. Klapetek P, Necas D (2013) Data analysis software. Central European Institute of Technology, Kotlářská

    Google Scholar 

  134. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  135. Serghei A, Kremer F (2008) Broadband dielectric studies on the interfacial dynamics enabled by use of nanostructured electrodes. Rev Sci Instrum 79:0261011–0261012

    Google Scholar 

  136. Serghei A, Tress M, Kremer F (2009) The glass transition of thin polymer films in relation to the interfacial dynamics. J Chem Phys 131:154904

    CAS  Google Scholar 

  137. Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U (2008) Self-ordered anodic aluminum oxide formed by H\(_2\) SO\(_4\) hard anodization. ACS Nano 2:302–310

    CAS  Google Scholar 

  138. Zaraska L, Sulka GD, Jaskuła M (2011) Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J Solid State Electrochem 15:2427–2436

    CAS  Google Scholar 

  139. Poinern GEJ, Ali N, Fawcett D (2011) Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4:487–526

    Google Scholar 

  140. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    CAS  Google Scholar 

  141. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341

    CAS  Google Scholar 

  142. Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1484

    CAS  Google Scholar 

  143. Vogel H (1921) The law of the relationship between viscosity of liquids and the temperature. Physik Z 22:645–646

    CAS  Google Scholar 

  144. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    CAS  Google Scholar 

  145. Tammann G, Hesse G (1926) Die Abhängigkeit der Viscosität von der Temperatur bei Unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156:245–257

    Google Scholar 

  146. Floudas G, Reisinger T (1999) Pressure dependence of the local and global dynamics of polyisoprene. J Chem Phys 111:5201

    CAS  Google Scholar 

  147. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    CAS  Google Scholar 

  148. Bello A, Laredo E, Grimau M (1999) Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: application to \(\alpha \)-PVDF. Phys Rev B 60:12764–12774

    CAS  Google Scholar 

  149. Schönhals A, Goering H, Schick C, Frick B, Zorn R (2004) Glass transition of polymers confined to nanoporous glasses. Colloid Polym Sci 282:882–891

    Google Scholar 

  150. Bahar I, Erman B, Kremer F, Fischer EW (1992) Segmental motions of cis-polyisoprene in the bulk state: interpretation of dielectric relaxation data. Macromolecules 25:816–825

    CAS  Google Scholar 

  151. Frank CW, Rao V, Despotopoulou MM, Pease RFW, Hinsberg WD, Miller RD et al (1996) Structure in thin and ultra-thin spin-cast polymer films. Science 247:912–915

    Google Scholar 

  152. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  153. García-Turiel J, Jérôme B (2007) Solvent retention in thin polymer films studied by gas chromatography. Colloid Polym Sci 285:1617–1623

    Google Scholar 

Download references

Acknowledgments

E.U.M. and M.T. gratefully appreciate financial support from the Deutsche Forschungsgemeinschaft in a project (DFG SPP 1369) devoted to “Polymer-Solid Contacts: Interfaces and Interphases,” and the Graduate School BuildMona, respectively. Funding to F.K. by DFG in the framework of the Collaborative Research Centre SFB-TRR 102 is highly acknowledged. We also wish to thank Roxana Ene-Figuli for carrying out the DSC measurements at the Karlsruhe Institute of Technology (KIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Urandu Mapesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mapesa, E.U., Tress, M., Reiche, M., Kremer, F. (2014). Molecular Dynamics of Poly(cis-1,4-Isoprene) in 1- and 2-Dimensional Confinement. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_4

Download citation

Publish with us

Policies and ethics